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ABSTRCT

This dissertation takes a global approach to the processing of infor-

mation from an array of sensors. Essentially, the unpr.ocessed outputs of

I the individual elements are considered as the observables. The processor

I structure is allowed to evolve freely with the sole restrictior. being the

criterion of optimality.

11 Specifically, the array processors discussed must decide if the random

processes observed at the array element outputs consist of a signal obscured

f [by noise or noise alone. Any uncertain parameters are treated as random

variables and knowledge about them is summarized by a priori probability

density functions. The resulting detectors are optimum in the sense of

making a least-risk decision.

The general form of the likelihood ratio is derived based upon

L. observables consisting of the Fourier coefficients of the observed random

processes. For a stationary noise field consisting f a component indepen-

dent from sensor to sensor and an a!Jitive directional component, the

- covariance properties of these Fourier coefficients are pursued as a

function of the observation period length.

.Once the mathematics of the likelihood ratio has been written, the

optimal array processor can be implemented in various structures. Four
I such canonical implementations are discussed: (1) one shot, (2) pseudo

estimator, (3) two step, and (4) sequential. The pseudo estimator

approach to array processor design where any uncertain parameters are

t [ii)
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first estimated, then plugged into the parameters known likelihood ratio

as if they were known exactly. The general formulation of the time sequen-

tial structure reveals that the likelihood ratio can be realized by an

appropriate combination of single frecuency components. Each is an

independent time sequential processor which utilizes its own natural

conjugate prior to achieve a certain degree o: mathematical tractability.

Of particular interest are three specific problems involving either

signal or noise source location uncertainty

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD) I
(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)

3) Signal Known Exactly in Noise with an Additive Directional

*Noise Component of Uncertain Direction (SKE in NUD".

Their likelihood ratio expressicns are derived and performance reported for

several levels of location uncertainty and two array sizes. Performance

is stated in terms of the ROC curve.

Although an estimate and plug structure is appealing due to its explicit

adaptive characteristics, il: is shown that the optimal array processor

exhibits learning or adnptive features naturally when implemented sequen-

tially. Computer simulation runs of the SKE in NUD processor are used to

illustrate the Bayesian upeating which occurs as an integral part o.1 the

sequential structure.

[iii]
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GLOSSARY OF SVIBOLS

A parameter in the a ppiori probability density function
sumarizing location uncertainty

AO A

A mag, tude of the £ complex observation statistic

B parameter in the a priori probability density function
0 summarizing location uncertainty

BO 
B

bo(n) Fourier coefficient at w = nw0 of the deterministic signal0i 0
observed at the 0th array element output

B£ phase of the Zth cozplex observation statistic

C a constant

f C£ complex statistic of the observation vector

D height of the directional noise power spectrum

D(nw O) power spectral density function of the directional noise

dk(t) directional noise component at the kth array element output

d detectability index

DO 0D 1processor responses for the binary decision problem

Do complex statistic of the observation vector

E received signal energy

F El] expected value

E [+ conditional expected value

E£ complex statistic of the observation vector

Exiii1



Glossary of Symbols (continusa) 

erfc*(.) error function com-lerent [-I

ex-( ° ) exponential function

-xp(jx) cos(x) + j sin(x) (Euler's formula)

complex statistic of the observation vector

G£ complex statistic of the observation vector

g[_(-),_] function which depends on the observation vector onlythrough !")!
G(" ) function which does not depend on 8

H0 the two hypotheses in the binary decision problem

HO H
0

Hl H1

H£ complex statistic of the observation vector

h(8;y) member of a family of probability density functions indexed
by the parameter vector y

r(0) a family of probability density functions on j
complex statistic of the observation vector

( ) modified Bessel function of order zero

Im{'} ima ginary part

ITER iteration

imaginary unit

K number of array elements

k array element index

r)
Lxiii]



Glossary of Symbols (continued)

L A(-) (likelihood ratio)

L(. ) lnA(.)

in (.) natural logarithm

lim limit

l.i.m, limit in the mean

M E~z] (mean or exptected value of the vector z)

m(t i ) ith time sample of the function modulating cos(wt- )

N total number of Fourier coefficients less one; also used
as the height of the independent noise power spectrum

N(n 0) power spectral density function of the noise which is
independent from sensor to sensor

Of x0 /2 power, spectrum height for white Gaussian noise

n frequency Index

n(_) vector of all Fourier coefficients due to noise alone

n k(t) independent noise component at the kth array element output

: N(O,a 2 ) normal or Gaussian distribution with mean zero and variance a2

Up() joint probability density function

p(_) conditional joint probability density function

I - p'(_;Y) natural reproducing probability density function

P(WOTN) p(cc-n )

iD detection probability

SF false alami probability

IQ covariance matr! .x

if i
Q- inverse of Q

I L general observation space

R general vector of observation

_KR general observation vector of dimension K

Exiv]
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Glossary of Symbols (continued)

R. ith observation
1

Rm real vector space of dimension m

R(T) autocorrelation function

r(e) a nonnegatiVe function defined on 0

Re{-} real part

S height of the random signal power spectrum

S(nw 0 ) power spectral density function of the random signal

s(-) vector of all Fourier coefficients due to signal alone
s(n) the Fourier coefficient at w = nw 0 of a deterministic time

waveform

s(t) a deterministic time waveform

s(t.) i t h time sample of s(t)1

sinc(x) sin(lx)/(7x)

T total or incremental observation period length depending

on the context; also used to indicate transpose

t the time variable

T, incremental observation period length (Chapter V)

inc

U paramete, in the conjugate a priori probability density
function for the uncertain direction problems in Chapter VI

K u(n,-r s pointing vector in the direction of the signal source at
S nw0

(1/2)V variance of both x and y

V£ parameter in the conjugate a priori probability density
function for the uncertain direction problems in Chapter VI

var(.) variance

v(n,T ) pointing vector in the direction of the noise source at
= nw0

[xv]
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Glossary of Symbols (continued)
z(t) randoq processes observed at all the array element outputs

L z (t) random process observed at the kt h array element output

r parameter space

3l paramete- vector characterizing one member of a family of
probability density functions

y a priori parameter vector
Y Ka posteriori parameter vector after K observdtions

6(-) sufficient statistic

n 'mB {nmO n m (Kronecker delta function)

,in decision threshold

o parameter space

e- vector of parameters

1A(-) likelihood ratio
,. A(- I" ) conditional likelihood ratio
S I A'(.) likelihood ratio based on natural conjugate priors

a a2  variance

T time delay
Ts  time delay of the signal between adjacent elements of a

uniformly spaced linear array

i time delay of the directional noise between adjacent elements
of a uniformly spaced linear array

T ZTk time delay of the directional noise between the Lth and kth

avray elements

$ # one-dviensional parameter space in the SKEP problem

* uncertain parameter (phase) in the SKEP problem

[xvi]
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Glossary of Symbols (continued)

w the radian frequency variable

0 21/T or 2/Tinc (fundamental radian frequency)

I 12 magnitude squared of the complex argument
N

E summation
n-0

N multi~plication

i n=O

f (')dS_ multiple integration over the parameter space

approximately equal to
appr.oaches

mFosie transform pair
~membership

C inclusion

conjugate transpose

circumflexes denote estimates of the true values

[xvii]
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Chapter I

INTRODUCTION AND OVERVIEW L

The utilization of an array of sensors to obtain some degree of spatial

filtering or directional sensitivity is well known. Most of the antenna

array literature concerns itself with beam patterns achieved through various

weightings and location geometries of the individual elements. Thus, it is

not surprising that the approach to processing informiation from an array of

sensors usually has involved beamforming as a basis. While such an approach

seems quite logical, it inherently assumes that operaticns which appear

correct locally (beamforming, for instance) will facilitate the overall
goal of good signai processing.

A global approach to the processing of information from an array of

sensors takes another point of viev. Essentially, the unprocessed outputs

of the individual elements are considered as the observables. Based upon

some criterion of optimality, the processor structure is allowed to evolve

freely out of the mathematics of the problem being considered. Beamfoniing

may be an integral part of the resulting structure, but it is not imposed

from the beginning.

The array processors discussed in this dissertation are derived from

within such a global framework. Specifically, they must decide if the

random processes observed at the array element outputs consist of a signal

obscured by noise or noise alone. Any uncertain parameters in the problems

considered are treated as random variables and knowledge about them is

[2]
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summarized by a priori probability density functions. The resulting

detectors are optimum in the sense of making a least-risk decision. This

approach has become known as the Bayesian design philosophy.

it Major contributiona of this work are in two areas. First, the time

sequential optimal array processor is formulated in general terms and its

natural adaptive feature is noted. Second, tie optimal array processors

are derived and their performance reported for three specific problems

involving either signal or noise source loca-..n uncercainty.

, Detection theory- from a Bayesian point of view is reviewed in Chapter

II. The likelihood ratio is introduced as the optimum processor for any

goodness criterion where good decisions are preferred over bad. Then, four

canonical structures in which the likelihood ratio may be implemented are

discussed. Lastly, evaluation of performance for optimal processors is

: (. considered.

The general signal detection theory results of Chapter II are special-

ized in Chapter III to the optimal processing of data from an array of

sensors. A review of the related literature is presented followed by a

discussion on the utilization of the Fourier coefficients of the observed

random processes as observables for an optimal array processor. The

likelihood ratio based on these Fourier coefficients is derived and its

implementation in terms of three of the canonical structures mentioned

jabove is discussed. An important comparison is made between the optimal

and a popular ad hoc approach to the estimate and plug array processor.

In preparation for a discussion on the time sequential implementation

of the optimal array processor, Chapter IV considers the covariance between

the Fourier coefficients as a function of the observation period length.

*1 -
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Specific results for a noise field consisting of a component independent

from sensor to sensor and an additive directional component are given.

Chapter V presents the general formulation cf the time sequential

optimal array processor. A canonical structure is derived where it is LI
shown that the likelihood ratio may be realized by an appropriqte combina- u
tion of single frequency ccmponents. For the particular noise field

described above, cinditions are given for the selection of an incremental

observation pet:'od length.

Three specific detection problems where there is either signal or

noise source location uncertainty are the subject of Chapter VI. Their

parameter conditional joint density expressions are derived and the

essential features of each is illustrated.

A generalized approach to the analysis of performance for optimal

processors is discussed in Chapter VII. The utilization of sufficient

statistics as an intermediate step between the observables and the likeli-

hood ratio is shown to be advantageous when performance for more than one

pair of a prio probability density functions is desired.

Chapter VIII contains a presentation and deta'led discussion of

performance results for the three specific problems mentioned above.

Several observations comparing the relative seriousness of signal and

noise source location uncertainty are made.

The natural adaptive feature of an optimal array processor when imple-

mented sequentially is considered again in Chapter IX. Computer simula-

tion runs where the directional noise source's location is uncertain are

used to illustrate the Bayesian updating which occurs as an integral part

of the sequential structure. Several noise-to-noise ratios are investigated.

I Lastly, Chapter X provides a summary of this work and suggestions for

further research.

4
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Chapter II

BAYESIAN SIGNAL DETECTION THEORY

Within the communications context, the two broad subjects of signal

* detection and estin."tion theory are concerned with decision making based

upon operations performed on some received data. In the first, only a

decision about the presence or ansence cf a certain signal, or s-ibset of

signals, in the data is required. In the second, the decision involves

estimating one or several parameters which are contained in the data.

Processors for these tasks are designed based on some criterion of goodness

or optimality. The viewpoint in this dissertation will be Bayesian where

V. any uncertain parameters are modeled as random variables and knowledge about

them is summarized by a priori probability density functions.

The following sections will provide the mathematical framework of

signal detection theory from which we will work. Important concepts to be

emphasized are: (1) the likelihood ratio, (2) processor structure, and

(3) performance. Parts of the presentation will closely follow a recent

excellent paper by Birdsall and Gobien (Birdsall and Gobien, 1973).

The Likelihood Ratio

Consider the binary decision problem where there are two mutually

exclusive and exhaustive hypotheses, H and HI . Assume a vector of obser-
0 1*

vations R is made from a space . Under H01 the distribution on is

characterized by a probability density conditioned on a vector of param-

0cters _ which belongs to the family {p(RIeo,H0) ; %E 0}. Under HI,

-:-0 o 1) i.0
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the density belongs to the family {p(R101 ,Hl) ; 1 e}. There may be

components of 6 and 8 which represent the same parametars. In summary

H p(R16 H0 ) 6 (. GO

H1 : p(R.E*l, H1 ) , _1 E 1.

Based upon the observation vector, the processor must make a decision

(D or D ) as to which hypothesis it believes is true. Classical detection

theory has shown that decisions based upon the likelihood ratio are optimum

for a wide range of goodness criteria (Peterson, Birdsall, and Fox, 1954 ;

Middleton and Van Meter, 1954)

A(R) A P(- ) (2.2) 1
_ TH 0 ) 0

Birdsall has shown more generally that any optimality criterion based on

"detection probability" P(DI1HI ) and "false alarm probability" P(DIIH 0 )

where good decisions are preferred over bad leads to the calculation of

A(R) as the decision statistic (Birdsall, 1973). Thus, a separation is

achieved between the processing of R and the actual optimality criterion

chosen which arises in the selection of a threshold value n.

The situation may arise where one or several of the conditioning

parameters in either or both 8 and 8_1 are uncertain. These are then

modeled as random variables and any prior knowledge about them is sum-

marized by a priori probability density functions p(%) and p(8l). The

desired deci.sion statistic now becomes the likelihood ratio of marginal

probability density fmctions on

V-
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f,9 P(RjejHl)p(eij)det

-- - - -2.3)

A(R) (2.3)

--f f0p(Rio%,HO)p(%)d% 0

Processor Structure

Once the mathematics of the likelihood ratio has been written, any

realization of A(R) will achieve identical results. None the less, struc-

turing the processor in various ways often can be advantageous from the

standpoint of any potential insight gained, comparison with non-Bayesian

approaches to a similar prcblem, or the desire of greater feasibility and

flexibility of implementation. Already considered, the one shot processor

simply calculates A(R) as shown in (2.3). Three other specific structures

to be discussed are: (1) pseudo estimator, (2) sequential, and (3) two

step.

The pseudo estimator structure is actually a particular case of a more

general class of structures resulting from the application of Bayes' rule

p(61R) = p(Rjk)p(k) (2.4)_ _ p(R) "

Here the a posteriori probability density function of 0 is calculated based

on the observation vector R and the prior knowledge p(O). The marginal

dcns*t5 appearing in the denominator of (2.4) is simply a normalizing

,' constant

p(R) = fe P(RJ2.')P(6')d0'.(25

Utilizing Bayes' rule in (2.3), the likelihood ratio may be written as

p(_)p(lR, Hl)p(o_ 0 (2.6)
A(R) - no-0 (j0 ,,o) (2.6)p p(21 H_ 7
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where A(RJ 1,,) = p(_-iYo',H)

i.e., the parameters known likelihood ratio. Note that any convenient,

admissible value of the parameters may be used to evaluate (2.6).

A pseudo estimator structure results if values for % and _ may be

found such that [1
P(2_I)P(_OIR_,H 0)

p()~1J~ )(2.7) tl
Solution values thus chosen for 0_ ande are called pseudo estimates L
(Jaarsma, 1969). One value of such a structure is for the purpose of -

comparison with other ad hoc processors where some estimation scheme is

$ joined with the parameters known likelihood ratio to yield a suboptimal, iJ
but perhaps easily implementable, receiver design (Hatsell and Nolte, 1974).

A second approach to processing the observation vector is to do so

sequentially, i.e., the processor operates on one or a small block of I
observations at a time in a serial fashion until all the data has been

exhausted. Consider a vector of dimension K

K
iTR p(RilJ1 . (2.8)

An expression for p(RiIR_l) is desired. Assuming parameter conditional

independence

p(RiIR- 1 ) = fE p(RiI .-1,2)p(OI_1 )dQ
V(2.9)

fe p(Riie)p(eIR._-l)dO

where p(OeR. ,) is an updated version of the a priori probability density

function of e_[

Ii
[-
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P(R i- l1)p(OIR i2 )

p(Ri_l p(R IR (2.10)
H i-i -i-2

The expressions (2.8), (2.9), and (2.10) when conditioned on H and H0 are
1 0

the design equations used to obtain the marginal distributions in (2.2) for

K iterations. In general, the numerator and denominator equations in (2.2)

must remain separated in the updating sequence.

I Principal advantages gained in structuring a processor sequentially

include no need to specify the actual total observation length and the

inherent learning or adaptive nature of the processor through the iterative

updating of its a priori knowledge of the uncertain parameters. Furthermore,

Nolte has shown that it may be necessary to implement some processors

E sequentially in order to avoid feasibility problems such as a growing

memory requirement (Nolte, 1965; Nolte, 1966)

The final processing structure to be discussed concerns a two step

approach proposed by Birdsall (Birdsall, 1968; Birdsall and Gobien, 1973).

[ .In the primary processor, the observation vector is processed in conjunction

j with any convenient densities (subject to minor restrictions) substituted

for the actual a priori knowledge. The output of the primary processor

,4 is utilized by the secondary processor along with the true a priori

knowledge to calculate the likelihood ratio. A more detailed description

"" will require introducing the concepts of sufficient statistics and repro-

ducing densities. These concepts will be most important in the development

of later chapters in this dissertation.

From a Bayesian point of view, a fixed finite dimensional sufficient

* statistic of the observation for an unknown parameter vector would be

defined as

p(OfR) = p(8JI(R)) , for all R. (2.11)

'~. ~.
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Thus, the statistic (R) contains as much information about e as do the

observations themselves. Furthermore, the dimension of 6(h) remains [J
constant even as the dimensionality of the observation vector increases.

The classical factorization theorem prt.-*.:es conditions for identifying L
a sufficient statistic. U
Theorem 2.1 Let p(EKR1_) be the cond'tional density and 6(R) the fixed

finite dimensional statistic as defined previously. Then 6(R) is sufficient

for e if there exist:

(1) a function g[6(EK),6] which depends on the observation only

through 6(.), and .

(2) a f'nction G(R) which does not depend on 6, such that

K(lt) = g[6( _),j] G(K) .(.2

Consider the following example to illustrate this concept. The observations

R. consist of an unknown scalar e added to independent samples n. drawn

from a distribution N(O,a
2).

R. = 8 + n. i 1,2,..,

Since the observations are parameter conditionally independent, their joint

distribution may be written and factored as follows

K
p(_ je) =T p(Rile)

i-1

2 -KI 2  1 K 2j 1(2 K
O )  exp[- i1 R 2-2(K=0 Ri)]

G(R) g[6( ),8] (2.13)

K
where 6(R) IK, R.

=K



By simply applying Bayes' rule, we can show that if S(_RK ) is sufficient for

U0, then the a posteriori density of 0 given .(h) is independent of R

p Substituting (2.12) into (2.4) we see that G(R) cancels between the

numerator and denominator leaving

Qr6(R.
= ) • (2.14)

(numerator) dO

Next, we wish to consider a definition and theorem on reproducing density

functions (Birdsall and Gobien, 1973).

Definition 2.1 Let/fr(e) = {h(;) ; yercR, 0ee} be a family of pdf's on

e which is indexed by the m-dimensional parameter y. Wr(0) is said to be

[ a reproducing class of jrbabilily densities under p([JO) if, for any K,

whenever the a priori pdf on 0 is

p,(e)=h(i;y.) , r- r

K K0there exists a y =y )4_ r such that the a posteriori pdf is

Thus, the a posteriori pdf remains in the same family of functions as the

a prioridf, differng only in the ,,alues of the parameters characterizing

members in the family. Primes will be used to signify that we are within

the class of natural reproducing densities.

Theorem 2.2 Suppose p(RKIO ) admits a sufficient statistic of fixed

dimension 6V for e and hence can be factored as in (2.12); let the

function g(.,.) be as defined there, and, provided the integral exists, put

p(i;) , yer (2.15)
fe gy,0']d_' -
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where r is the image of the space of observations under 6(). Then

{p'(-; ) ; ".ye} is a reproducing class of densities under p(RKie). [
The class thus defined is called the natural conjugate class of pdf's

under p(IOe); existence of a sufficient statistic implies existence of

such a class. [1
It is possible that the natural conjugate class may not contain a

member suitable for describing the true a priori knowledge. However, LI
suppose the true a priori pdf on 0 can, for some y *r, bf written

p() = r(O)p'(O;y) (2.16)

where r(e) is a nonnegative function defined on 0 and p(O) is absolutely

continuous with respect to p'(;y 0). Since p'(_;y 0) is reproducing, a

simple application of Bayes' rule (2.4) reveals that p(8) also reproduces

with parameter y

r(O)p'(O;y 
K )

o (numerator) de--

KI

Utilizing (2.17) and a Bayes' rile substitution for p'(O;y K), the marginal

distribution of R given the true a priori knowledge can be written in

terms of the natural conjugate class of densities and r(e)

P(-) = p'(-) 1' r(O)P'(O; K) dO (2.18)

The mathematical description of the two step approach to processor

structure now can be completed. The primary processor uses a convenient

description of a priori knowledge out of the class of natural conjugate

densities (if such a class exists). The secondary processor utilizes

the likelihood ratio calculated on the basis of these densities together

with the resulting sufficient statistics characterizing the a posteriori

pdf's and the true a priori knowledge to calculate the true likelihood ratio

t . .. .. o... :, ] . . ._ _ <:: .:- -- 4.- .4".. _,-.. ? .. , '"',x. 
' a :
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11A() = A' ) d(2.19)

few p( K£.1)p'(e) delwhere A()
fe0 p(R l)p'(o) do

0 -

The benefit of such an approach to receiver design is that potentially a

S jj major portion of the processor can be designed without %:lowing the exact

a priori knowledge. Furthermore, the mathematic.l tractability of the
I [j natural conjugate priors may simplify the design of the primary processor.

Performance

The complete description of a detection device includes both the

processor itself (i.e., the mathematical transformation from observation

space to decision statistic) and the performance of the processor evaluated

with respect to the goodness criterion initially chosen. As mentioned

earlier, the likelihood ratio has been shown optimum for any goodness

criterion based on "detection probability" P(DIHI) and "false alarm
probability" P(D1 H0 ) where good decisions are preferred over bad. Thus,

the appropriate description of performance for a likelihood ratio computing

device is its detection and false alarm probabilities as a function of

decision threshold. The precise definition of these terms (which arise

from within a RADAR and SONAR context) now will be given.

Since the likelihood ratio is simply a transformation of random van-

ables (the observation vector R) to a one dimensional decision statistic

(A(R)), the likelihood ratio itself will be a random variable whose

probability density function will depend on which hypothesis (H0 or H1)

<

"_ " -i-t~- 
- > z .-
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is actually active onR. Recalling from (2.2) that the threshold n divides

the decision space, define

PD p(DIIHI) =  p P(AIHI) dA (2.20)
n

p(DlH o) A [ p(AIH o) dA . (2.21)

Peterson, Birdsall, and Fox introduced a graphical representation of P

versus P F as a function of n known as the ROC (receiver operating charac-

teristic) curve (Peterson, Birdsall, and Fox, 1954). The ROC curve will

be the means by which performance of the detection receivers discussed in

this dissertation will be evaluated and compared.

In general, the entire ROC curve is necessary to completely specify

performance. However, in the classic SKE in WGN problem (H1 : signal known

exactly + white Gaussian noise vs. H0: white Gaussian noise alone), per-

formance is summarized by a single number known as the detectability index

d2 . in this case, the distribution of £(R) = lnA(R) is Gaussian under

H1 and H with equal variances of 2E/N0 and means separated by 2E/N0

(E = received signal energy; N /2 = noise power spectrum height). By
0

definition (Van Trees, 1968)

[E(ilH1) - E(kHo)] 2

d var(IIH 0)

2E

N0

Detection and false alarm probability expressions corresponding to (2.20)

and (2.21) are

P er re(in 2) (2.23)
~D drf 2n



77 ~ ~ ~ =7-7

|77
15

P erfc*( d t) (2.24)

- 2

where erfc* f - exp(- - ) dx. (2.25)

- The SKE performance curves are illustrated in Figure 2.1 on normal-normal

paper. Note that performance increases linearly on the negative diagonal

as a function of d.

Block Diagrams and Sufficient Statistics

From the preceding discussion, it has been shown that once the likeli-

L hood ratio was determined, A(R) could be implenented in various structures

which might look quite different. Perhaps the epitome of this is in

L Birdsall's two step approach where the primary processor might take on

any one of an infinite number of structures depending on the tractable

prior chosen. Nevertheless, it is quite common for those of us engaged

in optimum receiver design to look for structural pieces in our particular

realization of A(R) that might bb either the same as, or in contrast to,

structure arrived at by other ad hoc approaches to the same problem. The

contention here is that perhaps toomuch emphasis has been placed in the

past on the overall structure of A(R) instead of some more fundamental

componept pieces. A solution for the likelihood ratio not in closed

form always has appeared only half completed.

The expression in (2.3) shows that the fundamental components of

A(R) before the introductlion of a particular a "ori knowledge are the

conditional densities of R under H1 aund H0 . Assuming p(RIO) admits a

j sufficient statistic for _, (2.12) shows that the two basic building blocks

are the sufficient statistic 6(R) and G(R). In general, no matter what

a priori knowledge is chosen, 6() and G(R) will have to be calculated
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under HI and H0. Any final structure of A(R) will always be a function of

these basic parts and it is their structure which will provide the most '(I
I fundamental basis from which comparison with other detectors can be made.

As an example, a recent paper by Adams and Nolte derives and discusses the H
interpretation of these basic components for optimum array processors in

fluctuating ambient noise fields (Adams and Nolte, 1975).

IZ

*1

~1.1
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Figure 2.1. Performance of the SKE Processor.
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Chapter III

OPTIMUM ARRAY PROCESSING II

A rigorous approach to signal detection theory from a Bayesian point

of view has been established. The desire now is to apply these general

concepts to the optimal processing of data from an array of sensors. It

should be emphasized that the Bayesian approach is global in the sense

that no processing structure (such as a beam former) is assumed from the i I
beginning. Rather, the mathematics (which results in structure) is allowed

to evolve freely cut of the problem statement with the unprocessed outputs

of each array element taken as observables. Furthermore, since the like-

lihood ratio will be used as the decision statistic, the only complete

description of array processor performance will be in the form of an ROC

curve.

The particular interest in this dissertation will be the general

formulation of sequential array processors when there is directional

uncertainty. Cases will be considered where there is both a far field

directional signal source and noise source in addition to an independent

additive noise component at each array element.

Literature Review

The Bayesian approach to array processing has been discussed in the

literature since the early 1960's. Unfortunately, there have been few

*1 instances where the likelihood ratio processor's performance has been

given in terns of the ROC curve. Quite often, other performance measures

-'I are used (such as array gain) which are not the optimality criterion under
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which the processor was designed. A brief 7ummary of the literature related

to this dissertation is given below. An excellent topical and chronological

review of optimum array processing -an be found in a recent dissertation

by Adams (Adams, 1973) and paper by Adams and Nolte (Adams and Nolte, 1975).

The earliest attempts to derive Bayes optimal array processors assumed

known directional s. ,.ual sourc, and noise fields which at times contained

L a highly directional additive component of known location. Bryn was the

first with his paper in 1962 on the detection of a Gaussian signal in

Gaussian noise (Bryn, 1962). His formulation used a truncated power series

expansion for the likelihood ratio which was optimum at low signal-to-

noise ratios. Unfortunately, Bryn's evaluation of performance was in

terms of array gain instead of detectability. A short time later, Middleton

and Groginsky discussbA in general terms the same problem without making a

low signal-to-noise ratio as ",mption (Middleton and Groginsky, 1964).

Their study was mainly concerned with factorization results (i.e., the

splitting of processor structure into a spatial component independent of

noise statistics and a component dependent only on the statistics of the

signal and noise random processes) and no performance was given.

Schultheiss also considered the problem of detecting a Gaussian signal

in jaussian noise (Schultheiss, 1968). His analysis centered on the benefit

of likelihood ratio processing over conventional beam forming when a major

component of the noise field was highly directional. True detection

performance was calculated based on a low signal-to-noise ratio assumption.

Another paper which quickly followed Bryn's was the first to deal

with detecting a signal of known form in Gaussian noise (Stocklin, 963).

Stocklin's work is to be noted for its complete analysis from likelihood

%j.



20

ratio through ROC curve. In 1964, Mermoz discussed the same problem from

a different point of view (Mernoz, 1964). His approach was to postulate

a linear structure consisling of filters at each array element whose

outputs were then summed together. The filter transfer functions were

calculated which maximized the signal-to-noise ratio at the summing junc-

tion. For this particular problem, the resulting processor is identical

to that of the Bayes optimal array processor. As in Middleton's and (j
Groginsky's work, a major contribution of this paper was in its factori-

zation results. Mermoz's analysis also is presented in a book by Horton Li'1

(Horton, 1969). ij

Several years later, the solutions due to both Bryn and Mermoz were

rederived by Cox from within a common mathematical framework using the (1
Schwartz inequality to maximize the detectability index (Cox, 1968; Cox,

1969). Particularly well presented is the concept that such seemingly L/

diverse problems are actually closely related. In addition, the 1968

paper gives an excellent discussion of detection theory results in terms

of complex random vectors with emphasis on the trigonometric Fourier series.

The incorporation of directional uncertainty into Bayes optimal array

processors has occurred only recently. Young and Howard modeled their II
signal as having a uniform a priori location distribution over a particular

field of interest (Young and Howard, 1970). Performance was given in

terms of average risk. In addition, average risk for the optimal processor

was compared to that of the conventional beam former as a demonstration

of the latter's rather severe sensitivity tc location uncertainty. The

next significant 1:ti. was taken by Gallop and Nolte (Gallop, 1971; Gallop

and Nolte, 19:'. 'v,el'r analysis allnwed signal location uncertainty to

be modeled at z y on - a continuum of a priori densities, extremes of
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which were uniform knowledge on one end and certainty of location on the

, other. Sets of ROC curves representing various levels cf location uncer-

tainty were given.

A general approach to the derivation of array processors for sources

of known location was proposed in a paper by Adams and holte (Adams and

Nolte, 1975). Particular emphasis was given to receiver structure, factor-

ization results, and performance when the noise field contained an additive

component from a fixed far field location. Additionally, Adams also has

pursued the derivation of likelihood ratio expressions where either the

1. signal or directional noise locations were uncertain (Adams, 1973). No

performance for these cases was presented. Essentially, the work in this

dissertation is an extension of that by Adams to the consideration of the

sequential implementation of array processors when there is directional

uncertainty and the calculation of perfurmance for several specific

problems.

Trigonometric Fourier Series

The application of classical statistics to optimal detection theory

requires a finite dimensional vector of observables whose joint probability

density function under H0 and HL is used to form the likelihood ratio.

Typically, the array element outputs will be a collection of continuous

time waveforms. Some mapping then must be used to carry this space into

into a space of finite dimensional vectors. Three well. known approaches

to this transformation are: (1) time sampling, (2) the Karhunen-Lo~ve

expansion, and (3) the trigonometric Fourier series. The selection of

a particular mapping is heavily problem dependent. A wise choice can

often greatly simplify the mathematics of the likelihood ratio. Adams
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showed that the third approach led to a significant amount of traptability,

especially when the noise field contained an additive source in the far

field (Ada- :', 1973; Adams and Nolte, 1975). The trigonometric Fourier

series will be used throughout this dissertation. Basic definitions and

results for the characterization of random processes follow (see also

Papoulis, 1965, and Van Trees, 1968).

What we desire is a series expansion valid for sample functions z(t) fj
from a zero mean stationary random process over the interval (-T/2,T/2).

Written as a Fourier series

N 11/2 az~t) - .i.m. I z(n) W¥ expCjnw t) ,Itl<Tl2 ,J.1)
N+ n=-N

= 2w f
where -0 T LI

and z(n) = (iP1/ f.z(t) exp(-jnwot) dt. (3.2)
-T/2

Convergence is in the mean square sense (Papoulis, 1965). The notation ,6

"l.i.m." denotes limit in the mean which is defined as '

Iu
N i1/ 2 z 2lim E[(z(t) - X z(n) (1) exp(jnwot)) I = 0 , ItI<T/2. (3.3) ,

N n=-N 'D

Since z(t) is a random process, z(n) will be a randzm variable and

(Papoulis, 1965)

lim E[z(n)z(m)* ] = {0.4)
7 , n m

where N(nw ) is the power spectral density of the random process and "1"

denotes conjugate transpose. Thus, as the observation interval T increases,

the Fourier coefficients at different luency indices become uncorrelated.

ii
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The series in (3.1) can be truncated at any N with a corresponding

representation error. The expression in (3.3) guarantees that the expected

value of this error becomes smaller as N is increased. Particularly with

bandlimited random processes, (3.4) indicates that the expected value of

V error will be negligible when N = 2nW/w0 (W the bandwidth in Hz.) for T

taken sufficiently large. Under these conditions, we will say that the

real sample function z(t) can be mapped into the finite dimensional vector

z where

z = [z(O),...,z(N)]T (3.5)

the "T" denoting transpose. Coefficients with negative indices are not

written since for real functions z(-n) = z(n) . Considering such a finite

dimensional representation, if z(t) is replaced by its series expansion as

in (3.1), then the energy of the sample function over the observation

interval (-T/2,T/2) can be approximated by

T/2 N
f z(t) • z(t) dt = z(n)* z(n) . (3.6)
-T/2 n=-N

From (3.4), we see that for r sufficiently large

T/2 N
Er[ z(t) • z(t) dt] I N(nw 0 ) (3.7)

-T/2 n=-N

The discussion so far has emphasized random processes. Convergence

in the mean square sense guaranteed that almost every sample function

could be represented by its series expansion. More strict conditions can

be applied in the case of a deterministic time wuveform s(t). Since

{(l/T) /2 exp(jnw0t) ; n = -- ,...,-} forms a complete orthonormal set,
jthen for all s(t) with finite energy in the interval (-T/2,T/2)

:1!
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N 11/2
S(t)s(n) () exp(jn 0t) , jt<T/2 (3.8)

I(t surn N 1/2 jw t
N o -N

where W0 2w

1 1/2 T/2

and s(n) = T) / 2-  f s(t) exp(-jnwot) (3.9)-T/2

Again, convergence is in the mean square sense with (Van Trees, 1968)

T/2 N 1 1/2 2
lir f [s(t) - I s(n) (;F) exp(jn 0t)] dt = 0. (3.10)

SN- - -T/2 n=-N

Furthermore, the energy of s(t) over the observation interval (-T/2,T/2) is

ST/2*

T s(t) • s(t) dt = X s(n) s(n) (3.11)
-T/2 n=-

which is simply Parseval's theorem.

The optimal array processors to be considered in this dissertation

observe a vector of real time waveforms on the interval (-T/2,T/2)

z(t) = [zo(t),...,zK l(t)]T  (3.12)

where the subscript denotes the array element. Making the assumptions that

led to (3.5), let
) 11/2 T/2

zk(n) T/2  zk(t) exp(-jnw 0t) dt (3.13)
-T/2

z(n) =[z(n),...,zKl(n)]T  (3.14)

and z =[z(O)T,...,Z(N)TIT - (3.15)

In this way, the time waveforms observed on the K elements are mapped into

a K.(N+l) dimensional vector. Note that the Fourier coefficients for a

single frequency index n and all K elements are grouped together.

%.6
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Multivariate Complex Gaussian Distributions

The particular arrangement of Fourier coefficients in the vector z will

lead to certain mathematical simplifications in the likelihood ratio calcu-

lations to be discussed later. In preparation, this section will develop

the necessary theory of multivariate complex Gaussian distributions. The

presentation closely follows that of Adams and Nolte (Adams and Nolte, 1975)

Ii which is based on Goodman (C-oodman, 1963).

First, we will need definitions for complex Gaussian random variables

1i and vectors. A complex Gaussian random variable is defined to be a complex

If random variable whose real and imaginary parts are bivariate Gaussian. A

complex Gaussian random vector of dimension p is defined to be a p-tuple of

jI complex Gaussian random variables such that the vector of real and imaginary

parts is 2p-variate Gaussian.

Consider the complex Gaussian random vector z which can be written

1 z x+ iy. (3.16)

Our attention will be restricted to complex Gaussian random vectors whose

covariance matricies are of the following special form. Both x and y have

covariance matricies which are equal to 1/2 V, where V is a symmetrbic,

positive semi-definite matrix. The covariance of x and y is assumed equal

to 1/2 W, where W is skew symmetric and

[x- - E()] 
T  W

T 1 (3.17)

IE [y- E(y)][x - E(x)]j ~-W

Under these conditions, the p-variate complex Gaussian distribution of z

is given by
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p(z) = 1 exp[-(z-m) Q- (z-m)] (3.18)

where m = E{z} (3.19)

and Q = E{(z-m)(z-m)*} = V - iW, . (3.20)

The Likelihood Ratio and Arry Processor Structure

The results of Chapter II will now be rewritten in the context of

optimal array processors. The real random processes observed at the output

of each array element will be assumed stationary and jointly Gaussian.

Since (3.13) indicates that the Fourier coefficients at a particular element

are simply linear functionals of a Gaussian random process, the real and

imaginary parts of each z k(n) will be bivariate Gaussian distributed

(Van Trees, 1968). Thus, zk(n) is a complex Gaussian random variable.

Furthermore, since the observed random processes are jointly Gaussian, the

collection of real and imaginary parts of all the Foi.,ier coefficients will L

be jointly Gaussian (Van Trees, 1968). Thus, z is a complex Gaussian

random vector of dimension K-(N+).

Consider the array detection problem where the observables consist of

K-(N+I) Fourier coefficients arranged as in (3.15). The two mutually

exclusive and exhausive hypotheses will be

H0 : z = n(60)

(3.21)
If : z = s(eOl + n(el){

where n(O0), n(el), and s(6- are noise and signal vectors written expli-

citly as functions of parameter vectors 0 e0 and 0 _ 0 Since z is a

complex Gaussian random vector, the likelihood ratio is written as
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1 (---(0-)*Qj-1(e )(zm (0 )p(O_ )dO11 A(z) -- 1 ..... exP-(z1 n (% -- -1 -1 -- I
feo 1 eXp[-(z-M(%) -* %-1o ( %)d

U(3.22)

I where MI(In ) = Efzjt1,H1} ; g(O) = E{zIo ,Ho0

and p(2_1 ) and P(O) are a priori probability density functions.

As a specific example, A(z) for the problem of detecting a signal known

exactly in bandlimited white Gaussian noise is easily written. Since there

are no uncertain parameters under either hypothesis and m= 0, (3.22)

U" becomes
! A(z) = exp[-m* _Qn + 2 Re{z*Q-im}] (3.23)

Q-:*_Q1 -where m =

and "Re" denotes the real part.

S["Recall that the performance of this processor is completely specified
by the detectability index d (see (2.22)) which has the value

d2 = 2 mQ-lm . (3.24)

Note that under the condition in (3.4), the covariance between any
I

two Fourier coefficients at different frequency indices will be zero. Thus,

the covariance matrix Q will be block diagonal (KxK blocks) and its inverse

also will be block diagonal. The expression in (3.23) can be rewritten as:1.

i U
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N N
A(z) = exp[- I m(n)*Q-(n)m(n) + 2 Re{ I z(n) Q-l(n)m(n)}]- n=O- - - n=O

TT exp[-M(n)*Ql (nm(n) + 2 Re{z(n)*Ql (n)m(n)}] (3.25)
n=O

where m(n) = E{z(n)IH I} (z(n) as in (3.14))

and q(n) = E{[z(n)-m(n)[z(n)-m(n)]j *IH l . !

The likelihood ratio has been broken into its "single frequency"

components. This is the reason for arranging the Fourier coefficients in

the observation vector z as shown in (3.15) dnd such a decomposition will

be valid for all problems where the condition in (3.4) has been met.

Table 3.1 summarizes the likelihood ratio expressions for three realiza-

tions of the array processor structure: (1) one shot, (2) pseudo estimator,

and (3) two step. Figures 3.1, 3.2, and 3.3 illustrate their corresponding

block diagrams. Discussion of the sequential structure is postponed until

suitable conditions on the length of the incremental observation interval

have been established so that both the expression in (3.4) still may be

considered valid and parameter conditional independence between successive

observation increments is assured.

The fundamental form of the likelihood ratio is found in the one shot

optimal array processor given in Table 3.1 A and illustrated in Figure 3.1.

In this structure, all of the data is processed at the same time and the

likelihood ratio is obtained directly. Once the mathematics of the likeli-

hood ratio has been written, however, any realization of A(z) will achieve

the same performance. As mentioned in Chapter I!, structuring the optimal

processor in various ways often can be advantageous from the standpoint of

any potential insight gain( , comparisons with non-Bayesian approaches to a

similar problem, or the desire of greater feasibility and flexibility of

implementation.



The pseudo estimator structure given in Table 3.1 B and illustrated in
Figure 3.2 Provides a means of comparing the optimal array processor with a
popular ad hoc detector structure. An appealing approach to an array
detection problem where uncertain parameters exist is to es'" .-te these

parameters and then plug them into the conditional likel1hood ratio as ifthey were known exactly. When "lgood" estimators are use', such a structure
as Illustrated in Figure 3.4 appears to be operating in an optimal fashion.Ii The processors of Bryn (Bryn, 1962) or Mermoz (Mermoz, 1964; Horton, 1969)
typically are assumed as implementations of the conditional likelihood ratio.
Examples of such an approach are the papers by Chang and Tuteur (Chang andTuteur, 1971) for the detection of a Gaussian signal of known direction in a
Gaussian noise field of unknown statistics and Bienvenu and Vernet (Bienvenuand Vernet, 1972) discussing a similar problem where the signal is of knownform instead of Gaussian. Another exaxple is the paper by Giraudon

(Giraudon, 1972) for the detection of a known form signal of known direction

imbedded in a non-stationary noise field, it is not clear, however, thatpiecing together locally optimal techniques (i.e., "good" estimators and a
solution optimal when all parameters are known) will yield global optI'malitywhen the overall goal is good detection performance. Note hat the struc-
tures in Figures 3.2 and 3.4 are equivalent only when 6 = - and 0 = 0

:-I --l __ Z-0-
are the pseudo estimates of 1 and 6 . Recalling from (2.7), utilizing the
pseudo estimates results in the lower branch of Figure 3.2 equaling unity.
Thus, the optimal array processor can be realized in an estimate and plug
structure. It should be noted that the pseudo estimate is generally not
equal to a well known estimate.
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The third realization of the likelihood ratio as a two step processor
is given in Table 3.1 C and illustrated in Figure 3.3. The usefulness of

this structure is that potentially a major portion of the optimal array

processor can be designed without knowing the exact a priori knowledge. L.
Thus, a certain degree of implementation flexibility is achieved. The two

step approach provides the basis for the general time sequential array

processor structure discussed in Chapter V.

I:
-'I

a

i:
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Suarzy of Array Processor Structures

A. One Shot

weeA(z) =[::~ :

whe-1 E(z~t1,H11 !!m (00) EfzJ2OHe
and P(.)and p2)are a priori probability density functions.

Ii B. Pseudo Estimator

C..)pe Two Ste

1. ~~~A(z) A()-1-

whr A'(z )

,.C Tabl 3.1p
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arising from adjacent observation periods would be desirable since it can

L [lead to a convenient implementation of the sequential array processor via

(2.8), (2.9), and (2.10). Recall that when the observables are jointly

Gaussian, zero covariance implies independence. In this chapter, equations

will be derived which express the covariance between the Fourier coefficients

explicitly as a function of obseirvation period length.

Covariance Arising From a Scalar Random Process

Let z(t) be a sample function from the zero mean stationary random

process observed at the output of a single array element. The Fourier

coefficients for this time waveform will be as defined in Chapter III

z(n) 1/2 T/2 z(t)exp(-jnw0t)dt (4.1)-T/2

where O

The expression in (3.4) indicates that the Fourier coefficients at different

frequency indicies become uncorrelated as the observation interval T

increases. Unfortunately, little in insight is gained as to how fa.t this

occurs. The derivation in Appendix A due to Blachman is most beneficial

to this respect (Blachman, 1957). Summarizing those results

.00

E[z(n)z(m) ] = f N(xw )sinc(x-n)sin(x-m)dx (4.2)
0

U where N(xw) the power spectral density function of tht random process

and sinc(x) sin(Trx)

(nx)
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Note the orthonormal property of sinc(x)

f sinc(x-n)sinc(x-m) dx = ri (4.3)_00 nm

where n= f0, nm

The variance and covariance of the Fourier' coefficients now easily can be -'
pi ctured as areas under, a curve. The integrand in (4.2) is illustrated U
graphically in Figure 4.1 for two specific cases of the following expres-

sions Li
(1) Variance .

002
E[z(n)z(n)*] f N(xw0)sinc2(x-n) dx (4.4)

-00

(2) Covariance ij

CZ(n)z(m) ]  f N(xw 0 )sinc(x-n)sinc(x-m) dx. (4.5)
-OD

Two conclusions may be drawn

(1) Variance

As long as N(xwO ) is approximately constant within 2w or 3w

either side of nw0 , then

E[z(n)z(n) ] N(nwo) . (4.6)

(2) Covariance

As long as N(xw0 ) is approximately constant over the interval
0i

where the product sinc(x-n).sinc(x-m) has appreciable value, then

E[z(n)z(m) - 0 , n~m. (4.7)
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Essentially, increasing the observation interval leads to a smoothing of

the power spectral density function when it is written as a function of

xW0 (as T o -9 + 0 = 2r/T + 0). Thus, for a given random process, (4.6)

and (4.7) may be considered valid if the observation interval is chosen

long enough so that the power spectrum N(xw ) is relatively smooth with

respect to increments in w0 .

A particular power spectrum often assumed is that of bandlimited white

Gaussian noise {NoI2 ,Jwj < 2irW
NMw) (4.8)

0 otherwise

where W is the bandwidth in Hertz. It is interesting to observe how the

elements of the covariance matrix associated with such a spectrum change as

T is allowed to increase. Appendix B contains a set of five such matricies

which represent successive doubling of the observation length (Marshall,

1973). The first matrix is for an observation length such that W = .5w0/2w

or T = .51W; the last matrix is for an ob3ervation length such that

W = 8W 0/2w or T = 8/W. As T increases, the matricies become progressively

more diagonal in form. Roughly, a condition on the observation length can

be established on the basis of the last matrix. With reference to the unit

height spectrum, for at least 80% of the Fourier coefficients (0 < n < N)

to have the following properties

(1) .95 < E[z(n)z(n)*]
(4.9)

(2) JE[z(n)z(m)*]I S .02

then 2WT > 16. Note that this is on the order of the usually assumed con-

dition arising in the uniformly spaced time samples approach to random

process representation (i.e., 2V >> 1).
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Covariance Arising From a Vector Random Process

The previous section dealt only with the covariance between Fourier

coefficients representing the time waveform observed at a single element.

Presumably, the observation length will be chosen so that (4.6) and (4.7)

may be assumed valid. Now, let z(t) be a vector of sample functions from

the zero mean stationary vector random process observed as the collection

of outputs from all the array elements. The Fourier coefficients for these

time waveforms will be defined as in Chapter III

11/2 T/2
zk (n) f Zk(t)exp(-jnwot) dt (4.10)

-T/2

21r
where 0 T

and k the array element index.

Since the relationship between the coefficients representing a single

elementts output has already been discussed, it remains to consider pairs

of Fourier coefficients arising from two different elements.

Clearly, if the random processes observed at all the array elements

are independent of one another, their respective collections of Fourier

coefficients also will be independent. Such will be the case when we

consider independent sensor noise in the problem formulations of Chapter VI.

A different situation arises when the noise field contains an additive

, !directional noise component. Now, a portion of the random process observed

at one element simply will be a time delayed version of that observed at

another. Given that the observation length has been chosen long enough

so that (4.6) and (4.7) may be assumed valid, then any two Fourier

coefficients at different frequency indicies will be approximately

4 uncorrelated. However, coefficients at the same frequency index will be

.. . . . "" " i mmi
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related as shown in Appendix C. Summarizing those results

E[zk(n)zlk)*I ]  exp[-Jnw 0 -fk. D(x )sinc2 (x-n)exp[-](x-n)(

(4.11)

where T k is the time delay between the £th and kt h elements of the direc-

tional noise component d(t) and D(xw ) is its power spectral density

function. Note that if the reception situation is such that plane waves

are incident across a uniformly spaced linear array, then T£k = (k-£)T
9,k n

where Tnis -he time delay of d(t) between adjacent elements. As before,

the covariance of the Fourier coefficients can be pictured as the area

under a curve. The real part of the integrand in (4,11) is illustrated

graphically in Figure 4.2 for the case T Xk/T = 1/4. Two conclusions may

be drawn

(1) As long as D(xw0 ) is approximately constant within 2w0 or 3w0

either side of nwo, then

E[z (n)z (n ) IT exp(-jnwiT D(nw) 1 f=k
9. knIrk 9,k 0 -l

(4.12)

(2) As long as D(xw0 ) is approximately constant over the interval

where the product sinc(x-n).sinc(x-m) has appreciable value,

then

E[z£(n)zk (m) .  0 , n / m. (4.13)

Thus, for a given additive directional noise component, (4.12) and (4.13)

may be considered valid if the observation interval is chosen long enough

so that the power spectrum D(xw ) is relatively smooth with respect to

increments in w0"

-- -- - - --- ----
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Covariance Between Adjacent Observation Vectors

When the total observation period is broken into several smaller incre-

mental periods each of length T, a sequence of observation vectors will re-

sult. The real random processes observed at the output of each array element

will be assumed zero mean and stationary. Assuming T is chosen long enough

so that (4.6) and (4.7) may be considered valid, then two Fourier coeffi-

cients at different frequency indicies and in adjacent observation vectors

will be approximately uncorrelated. Coefficients at the same frequency

index are related as discussed in Appendix D. Summarizing those results

for the case of independent sensor noise

011
Ez k (n)*] f N(xw 0)sinc (x-n)exp[-j(x-n)2n] dx (1.14)

where z and zn are adjacent observation vectors and N(xw0 ) is the power

spectral density fun-tion of the independent noise. And, for an additive

directional noise component

i i+l 2  t"
E[z(n)z k  (n) I =exp[-jn0 f D(xw )sinc (x-n)exp[-j(x-n)(l- -)27rJdx

-w (4.15)

where D(xw0 ) is the power spectral density function of the directional

noise. Two conclusions may be drawn

(1) As long as N(xw0 ) is approximately constant within 2w 0 or 3w 0

either side of nw0 , then for independent noise

E[z (n)z (n) .0 (4.16)

(2) As long as D(xw0 ) is approximately constant within 2w0 or 3w0

either side of nw0 , then for an additive direction noise component

E[z (n)z k~ (n) * k IT exp(-jnw0~k T D(nw 0  _, , . T Ik
9 9k-i0 0 1i

(4.17)
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Thus, (4.16) and (4.17) may be considered valid if the incremental observa-

tion length T is chosen long enough so that the power spectra N(xw ) and

D(xw ) are relatively smooth with respect to increnonts in 10. Under these

conditions plus the additional requirement that TLk << T, Fourier coeffi-

{cients within adjacent observation vectors will have a parameter conditional
covariance of approximately zero.

The covariance expressions discussed in this chapter are summarized

in Table 4.1. Both the exact expressions and those conditioned on a

Esufficiently long incremental observation length are given.

Ji

I

I

L
!A
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Covariance Between the Fourier Coefficients

Let zk(t) = nk(t) + d0 (t - T~k)

where z k(t) = output observed at the kth element

nk(t) = independent noise component at the kth element

d0(t) = directional noise component at the 0th elemen,

TLk = time delay of directional component between the Lth and

kth elements.

A. Covariance Within a Single Observation Vector z H
E[zl(n)zk(m)IT]

it k k

=ex)[-j-i 0 kk1-fN~) 061 +D(xw )]sinc(x-n)sinc(x-m)exp[-j(x-m)(--7--)2r] dx

0wk k 0
r Li

N(xw O 0 power spectral density function of the independent noise

component

D(xw O  power spectral density funtion of the directional noise i
0J

component.

B. Covariance Between Adjacent Observation Vectors z and zi+

!li  Ez (n i+l..

i'i =exp[-jmw0(T-T k) ]" ]N(Xw0)" 6 k+D(xw0) ]sinc(x-n)sinc(x-m)

where tk

T

Table 14.1
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Now, assume that the incremental observation period is chosen long enough

so that the power spectra N(xw ) and D(xw ) are relatively smooth with

0 0
respect to increments in w0'

C. Covariance Within a Single Observation Vector zi

E[z (n)z (m).T k]-exp[_mMWOT k).CN(nw 0.6 +D( )I.0 4 T k) .. 6
I0k-tkk 10. 0 )J 0

L D. Covariance Between Adjacent Observativa Vectors z
i and zi+ l

E[zi (n)z ( Ir - (T-Tk)] .0+Df 0)].  { -T--- T"
I k xk 0 Ik-1 0 1 2 T

U z~~~~n~~abl (in) (co~1 lLOT~ Lntinued)

; I

I

L[.

; Table 4.1 (continued)

C%
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L.

Chapter V

TIME SEQUENTIAL ARRAY PROCESSOkS

The general design equations for sequential data processing were given

in (2.8), (2.9) and (2.10). No specific restrictions were made on the

nature of the observation vector (i.e., R could be a collection of uni-

formly spaced time samples of an ongoing waveform or perhaps the Fourier

coefficients of a fixed length signal). When the R. are uniformly spaced1

time samples, sequential processing leads to a natural learning feature

Vwith time as more observations are processed. The frequency domain analog

for a fixed length signal exhibits learning, not in time, but in frequency

sequence. The thrust of this chapter will be to propose a model of waveform

representation which breaks the total observation length into a sequence of

fixed length incremental observation intervals and then to analyze the

consequences in terms of time sequential processing utilizing Fourier

coefficients.

Time Sequential Structure

Consider the vector of stationary random processes z(t) as in (3.1.2)

which is the vector of observed outputs from each array element. Based

on some criterion (as yet unchosen), pick an incremental observation

period and break z(t) into time sequences of length Tinc.  he corresponding

vector of Fourier coefficients representing the ith period will be z

as in (3.15). Thus, for a tccal observation length nf T L-Tinc z(t)

1 L
will be represented by L vectors of Fourier coefficients, (z ,.,z )
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L& In the formation of the likelihood ratio, the marginal distribution of

the observables conditional to each hypothesis is needed. Our observables

L1 L
are now the L vectors (z ,... ,z ). Suspending the conditioning to H1 and

1 01 L L1

p(z i, )iO l lzl,...,z

L
SLip 1 6)p(6)dO (5.1)=l

Assuming parameter conditional independence of the zi

_± _ z'e) = pW- *o (5.2)

Substituting (5.2) into (5.1)

1 L TL

D(zl), = fe Ip(zi:I)p(e)do . (5.3)

Lastly, applying Bayes' rule L times to the integrand in (5.3)

L
rP( ,. . ) TT 10 P('1i1)P~e1 -M.. , O') (5.4)..

where p(Ojz -1 ...,zI) is the updated version of the a priori probability

density function of 0

, i- l , i-2 
1

p~z IZ .. ,z )
(6 -- - ("5.z)

Sequential processing in time as summarized in (5.4) and (5.5) now can be

accomplished using observables taken in the frequency domain to form the

marginal distributions required to calculate the likelihood ratio

A(zpz 1 ,. zl (5.6)
A z - .r ~,.H_ . 5
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Figure 5.1 illustrates the corresponding array processor structure.

Note that at the end of each incremental observation period, the prior

knowledge for that period is updated under H1 and H0 to reflect the pro-

cessing of an additional increment of data. These updated densities then 11
are used as prior knowledge for the next incremental observation period.

The essential advantages of structuring frequency domain array

processors in a time sequential fashion are

(1) No need to specify a priori the total observation length.

Normally, the number and location of frequency samples is

dependent on the total observation length through w0  27r/T.

Operating sequentially, we fix the incremental observation

period Tin c and thereby fix w 0 
= 27r/T. for any T = L.Tin cinc 0 incin

L an integer. Thus, the processor structure remains fixed

for any total observation length.

(2) Elimination of a linearly growing memory requirement. As

mentioned in (1), the number and location of frequency samples

is dependent on T for the one shot processor. When T doubles,

the number of frequency samples collected for a given band-

limited observed random process doubles, etc. Thus, twice

as many Fourier coefficients must be remembered and manipulated

to calculate the likelihood ratio. The sequential structure

eliminates this difficulty by permitting the processing of

(il/L) the total number of Fourier coefficients at the end

of each incremental observaticn period.

(3) The learning or adaptive features in time which take place

naturally with a time sequential Bayesian processor.

-.---
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Single Frequency/Conjugate Prior Decomposition

Now, make the additional assumption of parameter conditional indepen-

dence between Fourier coefficients at different frequency indicies and within

the same observation vector

p(zi().Ezi(N)e) p(,i (0)I2)...p(zi(N)1e) (5.7)

The resulting separation of the joint probability density function of the

observables in frequency modifies (5.3) to become

fF P(zlO )o)'-..P(Z(N)l2.) ... P(z L( O)..."P(zL(N)Ie-) P() dO

p (zl P ( )
Ist observation period Lth observation period

f p (z(0) J)" (.zL(0).0) . p(z(N) t) .z pL(N) ) p(6) dO

C 0 frequency N frequency

where p(z(n)10_) is the conditional density of the nth frequency component

thof the i observation vector as in (3.14).

Assume that Pli the conditional densities in (5.8) admit sufficient

statistics of finite dimension for 8 (see Theorem 2.1, Chapter II). Let

p(O) = r0(O)p0( _) (5.9)

where p0 (e) is a natural conjugate prior under p(z_(O)IO) and r0(8) is as

in (2.16). Then, utilizing Bayes' rule

(0) p" P(0) ei) P()- P(z(°)t)"..P(zn(0)2-) r 0 (0) P 0 (a)

= p(zl(0),... zL(0);p0(8))p(zl(O),... ,zL(O);p0 ()) r0(0)

(5.10)

'1
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where p(z1 (o),... zL(o);p0(O)) is the marginal distribution of

(z 1z(0),... ,z L(0)) and p(e zL(0)...,z (0);P0 (8)) is the a posteriori

distribution of 8 based on a prior of p0(8). Next, let

i ~p(01 z 1( 0),... ,zL(_ )p ;P(e)) = Mpl(0_)1) ( 5.11)

where p1  is a natural conjugate prior under p(zi(1)1O) and r.(O) is as

in (2.16). Continuing the alternate application of Bayes' rule and the

incorporation of natural conjugate priors for each of the N+I frequencies,

(5.8) becomes

p( 1,...,z ) = p(zl(0),...,z L(0);p 0 (0))...p(z (N),...,z L(N);pN())

[ !. "~~~~~ f0, *'(+) • "r,(6-)p(-iz z(N'),.. •" " (N)*pN(e -:)de-
N i L

{(T P(z (n),... ,z (n);Pn(G))}
n=O

N L
fo fThr()lp(6Jz (N),. ..,z (N);p())de (5.12)

The notation

I Lp(0I z(n),... ,z(n);P (9)) = rn+l(8_)Pn+l (0) (5.13)

has been used to indicate the relationship between the a posteriori pdf

1 Lof 0 after (z (n),... ,z (n)) has been processed and the a priori pdf of

1 L0 used for processing (z (n+l),... ,z (n+l)). Essentially, the data

dependency has been concentrated in r (e) thus allowing freedom in

the choice of pn-l (3). Figure 5.2 illustrates the general array pro-

cessor structure implied by (5.12). The single frequency se-luential/conju-

gate blocks are the realizations of p(zl(n),...,z (n),pn(0)); n = 0,...,N.

Each is an independent time sequential processor similar to Figure 5.1

for a single frequency index using its own natural conjugate prior. Only

I
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the nth Fourier coefficient from each array element is utilized by the nth

block. The integral provides the correct matching between the outputs of

the N+l blocks and the actual a priori knowledge contained in r 0(0) to

- yield the desired marginal density of all the observables. Note the

particular form of this integral when uniform priors are admissible (and

so chosen) for the natural conjugate priors po(O),...,pN()
N

1O {Iff* r(OM} p( ejz (N),... ,zLN);p MWd
n=O

N _LC f p(O){TT p(61z n,...,zL(n) ;Pn(e)}do (5.14)
n=O

where C is a constant. The integral becomes simply a weighting of all the

a posteriori single frequency/conjugate densities by the true a priori

knowl~dge. To form the likelihood ratio, the marginal density of the

observables conditional to H is divided by the marginal density of the

observables conditional to H as in (5.6).
0

The decomposition s 3gested by (5.12) is advantageous for the following

reasons

(1) Conceptually, the general array processor is seen to separate

into a few well defined components. In addition, since all

the sequential/conjugate blocks are mathematicdlly similar,

only the nth frequency block must be derived in detail.

(2) Practically, a majority of the general array processor can

be designed without knowing the actual a priori knowledge.

Furthermore, the inherent mathematical tractability of

natural conjugate priors may be beneficial in the develop-

ment of the single frequency sequential/conjugate blocks.
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Criterion for the Selection of T. 
f

inc

Derivation of the sequential optimal array processors in this chapter

relied on the two assumptions of parameter conditional independence made

~~in (5.2) and (5.7). Independence in time led to (5.3), and the addition J

of independence in frequency permitted the decomposition shown in (5.8).

For jointly Gaussian random variables, zero covariance implies statistical

independence, Thus (assuming the observables have a parameter conditional

expected value of zero) (5.2) is valid when

i i

and (5.7) is valid when

E[z£(n)zk(m) 8i= , n~m. (5.16)

In this section, sufficient conditions for the selection of an
incremental observation period T. are stated which insure the approximate

inc

validity of (5.2) and (5.7) for a particular class of problems. In this

class, the noise field is Gaussian and consists of a component indeDendent

from sensor to sensor plus an additive directional component. The dis-

cussion in Chapter IV relates the covariance properties of the Fourier

coefficients to observation interval length for such a noise field. The

covariance expression corresponding to (5.15) can be found in Table b.1 B

and (5.16) in Table 4.1 A.

Sufficient conditions for the selection of a T. are as follows
inc

(1) The incremental observation period shall be chosen long

enough so that the noise power spectral. density function

when written as a function of xw0 is relatively smooth with

respect to increments in wO = 2w/T.
0 inc
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(2) The incremental observation period shall be chosen long

enough so that the transit time across the array for the

directional noise wavefrcnt T is much less than T. nOK inc

The condition in (1) insures that any two Fourier coefficients at different

frequency indicies, be they within the same observation vector z i or within

adjacent observation vectors zi and z i+ l will have a parameter conditional

covariance of approximately zero

i i*,

E[z (n)z(m) O] 0 , n~m (Table 4.2 C)
Z k

E[zi(n) +l(m)*1_ = 0 , n~m. (Table 4.1 D)

The additional condition in (2) insures that two Fourier coefficients at
ian

the same frequency index and within adjacent observation vectors z and
i+l
z also will have a parameter conditional covariance of approximately

zero

E[z (n)z -~ n*6 , T T < < «T.X k kk OK inc

(Table 4.1 D)

Note that both conditions (1) and (2) are necessary to approximate (5.15)

while only condition (1) is required to approximate (5.16). Once a T.inc

is chosen which permits the assumption of (5.2), the parameter conditional

independence in (5.7) follows automatically when the noise field is within

the particular class being considered here.

A specialization of n'tacion occurs in this Chapter. T. is used to
inc

denote explicitly the incremental observation period length while T is

reserved to denote the total observation period length.
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Chapter VI

THREE SPECIFIC PROBLEMS AND THEIR CONDITIONAL LIKELIHOOD RATIOS

The focus of this chapter will be on the derivation of the likelihood

ratio processors for three specific problems. In each, directional uncer-

tainty arises in either the location of a signal or noise source. Our

observables will consist of the collection of Fourier coefficients z repre-

senting the bandlimited time waveforms observed at all of the array elements.

The primary goal here is to derive the single frequency parameter conditional

joint density expressions under H1 and H0* These are the fundamental

components required by all four of the optimal array processor structures

discussed thus far. Also considered are the essential features of the

sequential/conjugate blocks indicated in Figure 5.2 which evolve out of

the mathematics of each problem. Lastly, the incorporation of a conjugate K

prior into each block and the integral which results is discussed.

Uncertain Direction: General Formulation

The problems considered in this chapter involve either signal or noise

location uncertainty. As mentioned in Chapter II, likclihood ratio expres-

sions for such problems were originally pursued by Adams (Adams, 1973). An

array of K uniformly spaced elements on a straight line is assumed with the

zeroth element being the right-most sensor. The processor will be asked to

decide between the two mutually exclusive and exhaustive hypotheses H that
1

the time waveforms observed at the elements consist of signal plus noise

and H0 that they consist of noise alone.
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When noise alone is observed, the array element outputs are sample

functions of zero mean, stationary Gaussian random processes. One component

of the noise process is assumed to be spatially uncorrelated (i.e., indepen-

dent from sensor to sensor). The power spectral density function of this

component N(w) is assumed to be the same at each element. The second

Vcomponent of the noise process is due to a directional Gaussian noise source
j1 in the far field of the array. The power spectral density function of this

spatially correlated component is denoted D(W). Both components are assumed

bandlimited. Utilizing the notation of Chapter III and choosing an obser-

vation period sufficiently long for the expression in Table 4.1 C to be as-

sumed valid

N 1 *-1
0 W T[ { K 1 exp[-z(n)l-D(n, n-z(n)]}p(WoT n)d0Tn

0(Io l~~n no= 7t_2o (n,-rnl

(6.1)
)-i Dvv

where Q n - N(KI-- - (6.2)Z~o n- N(N+TK.-D)

N = N(n 0 and D D(nwO)
0 0

v(n,T) = El, exp(jnw0 n , . . exp(j(K-l)nw0 T)] (6.3)

and W = - T the observation period length.0 T

Uncertainty in location is reflected in the parameter *r which is the timen

delay of the directional noise between adjacent elements. Our a priori

knowledge on this parameter is summarized by the probability density function

P(W0Tn) . Since the covariance matrix is of the special form

%(n,T) = N I + D vv (6.4)

4
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where I is the K-dimensional identity matrix and v(n,T ) is the "pointing

vector" in the direction of the noise, its inverse in (6.2) is given by

Bartlett (Bartlett, 1951). A detailed discussion of this result is given

in Appendix E. U
Li

The signal consists of a Gaussian random process with a known time

varying mean. When signal plus noise is observed, the array element outputs I
consist of time delayed versions of this signal process added to the noise

processes described above. The random component of the bandlimited signal

process has a power spectral density function denoted by S(N) and the

deterministic component is represented by the Fourier coefficients b 0(n)

at the zeroth array element. Again, utilizing the notation of Chapter III I
and choosing an observation period sufficiently long for the expression in

Table 4.1 C to be assumed valid
N

P(zJH1) = f,,) T T ( KT Q ns

:11 exp[- (z(n)-bo (n)u(n, , s ))Q (n,Ts, n )-l(z(n )-bo~ 0 un s M
0 -1 s'n - 0 - s

Sp(wr ,0 t Tn )dw0t n dW 0 Ts  (6.5)

-Q - 1 D(N+K.S)vv +S(N+K.D)uu-2-D.S Re{.±U.vv .
-l n N[(N+K.D)(N+K.S)-D'S u'vveu]

11 = N(n: 0), D D(nw0 ), and S = S(ni 0)

_v(n n ) " =[,exp(Jn 0Tn),.. .,exp(j(K-l)nW0 T n

u(n,T) [1, exp(jnw0T ),...,exp(j(K-l)nW0Ts (6.7)

2Os
and 2 n T the observation period length.

T
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Uncertainty in the sigr I location is reflected in the parameter Ts which

is the time delay of the signal between adjacent elements. Under this

hypothesis, the covaridnce matrix is of the form

qO(n,Ts,Tn) = N I + D vv + S uu (6.8)

whose inverse in (6.6) also is disc- ;ed in Appendix E.

The likelihood ratio is by definition the ratio of (6.5) and (6.1)

pz) )  (6.9)

ThrecQ Proble~ms

The preceding section provided the general formulation of the array

processor when there is location uncertainty. Note how the integrands in

(6.5) and (6.1) separate into their single frequency constituents. These

single frequency conditional densities will be derived for three specific

problems

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD),1 -(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD),

(3) Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD).

'. i GUD

Under H0

p(z(n)IH1 exp[z(n)"Q (n)-lz(n) ]
- 0 KIQ() 1 (-.10

where Qo(n) = N I (6.11)

N = N(nw 0)
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I%(n)I = NL\ (6.12) I

and Q_(n)- NI. (6.13)
0!

Under H 1
p(z(n)l 0ts,HI ) = H1 exp[-z(n) Ql(n) z(n).

1 r KI(nTi z (.4

where Ql(n,T) = N I + S uu (6.15)

N N(nu0 ) and S = S(nw 0 )

u(n,T)* = [1,.., exp(jnw0Ts),..., exp(j(K-l)n0Ts)]

K-1IQl(n,Ts) i = N (K-S+N) (6.16)

and --1(nTs) = N-I (6.17)

N -N(N+K-S) (.7

Since the uncertain parameter exists only under Hi, the single frequency

conditional likelihood ratio is of interest

A(z(n)1 0 7s) A p(z(n)1w0 ts,H 1 )

-- p(z(n) 0 IH 1

A~zn~l T) I--() e-znY(Q

IQ_0(n) -1 -1
- 1(n)I e -n )((n ,Ts) -O(n) )z(n)]. (6.18)

Making the appropriate substitutions from (6.10)-(6.17) into (6.18)

K-1

A(z(n)Iw T F N~ eXD[W K-i

0 KD+N N(N+K.S) .0 z. (n)"z.(n)j]

K-i
S

exp[.+ 2{ A cos(nw 0Ts+B )}] (6.19)
rd1jN -E£ Os I.



where A1 cos B1 = Re[C£]

A 1 sin 
B = Im C1]

K- -V AK-l-1 , +
and C- z.(n) z (n) (6.21)

1

The essential features of the processor structure for this problem are

illustrated in Figure 6.1.

SKED in NKD

Under H0
p(z(n)(H o  = 1 - -~~n* -

-_Qn lexp(-z(n) Q(n) z(n)] (6.22)

w*

where Q(n) = N I + D vv (6.2)

N N(n0 ) and D = D(nw 0
v()=[i exp(jn 0Tn ..., exp(j(K-)nw0Tn

-- N T N(N+K-D) (6.24)

Urder H1

p(Z(n)iwTH) exp[-(z(n)-b0 (n)u(n,Ts)).Q(n) (z(n) 0_ (n)u(nT ))]-znOsH = Q(n) Q-n) (-7 1.-n

(6.25)

where u(n,T s  = ,xp(jnw 0ts) ... , exp(j(K-l)nw 0Ts

Since the uncertain parameter exists only under H1 , the single frequency

conditional likelihood ratio is of interest

~~i
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A(z()I) T A p(z(n)IW 0 s,HI )

=exp[2 Re{z_(I.)*_(nT'b]0o(n)u(n,Ts ) - lbo0(n)12u_(n,,*-(n)-lu(nTs)].

(6.26)

Making the appropriate substitutions from (6.22)-(6.25) int- (6.26)

A(z(n)IW s)T exp[- K[N+(K-I)D] lb0(n)12

1 nK-i
+ 2 Re{. z(n b0(n) D ) b (n)exp(-jin0 T )1]N 0 0 N(N+K-D) Iz n) 0a0on

1. K-1
* exp[2 [ A£ cos(knw0T + B (6.27)

where A cos B = Re[G ] - Re[H£] + Re[I]
(6.28)

A sin B. =-Im[G + Im[H I - Im[I ]
I. £

and G z£(n) b 0(n) (6.29)

A D K-i

H N(N+KD zi(n) *b(n) exp(-j(i-I)nw 0T) (6.30)
1C+- =0 1o 0n

D 2b (n) e2xp(jinw T
I£ N(N+K.D) 0(0)n(K-£)

The essential features of the processor structure for this problem ar

illustrated in Figure 6.2.

SKE in NUD

Under H 1

exp[-z(n) Q(n-T )z(n)]

(6.32)
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where (n, = N I + D vv (6.33)

N = N(nw 0) and D = D(nw 0)

v(n, = [1, exp(jnw0Tn), ... , exp(j(K-l)no0Tn)]

12I(n,T) N NK-1I(K.D+N)

and _Q(nn) I  -D (6.34)

i , Under H1

Unr n 1 exp[_(z(n)_b 0(n)u(n) 'Q(nT -l (n) 0 n
P~z(n~%'nHl)= K l(,n i - - - T --

K exp[z(n)*Q(n,T n)-z(n)+2Refz(n) Q(n,T r ) - b 0(n)u(n) }

lb b0(n ) 12uR(n) * -(n,T n1)-l u(n)] (6.35)

whe, u_(n) = El, exp(jnw0Ts exp(j(K-1)nW0 T •

Since the uncertain parameter exists under both hypotheses, the conditional

joint densities must be retained individually. Making the appropriate

substitution: from (6.32)-(6.35) into (6.32) and (6.35)

p(z(n)w 0TH 0) =

1 [N+(K-I)D]K 1  * - 1 0 U 0exp[- N(N'+K.D) igz i (n) zij.(n)] exP[N(N+K D)2Y A zcos (£n o Tn "+B 9
TKNK-l(K'D+N) n=.

(6.36)

and

i

'4
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pzn) t0  ,Hl) = 1 exp[ - z (n) z. n-

- 1 WNK-(K.D+N) N i=0

+ 2 Re{ K l zW%(n)exp(-jinw T K[N+(K-1)D] Ib0(n)1
2 ]+ eN(N+K.D)- EN(-) "= zin*0(nep( n0 s)- N(N+K.D) 0

D K 1 1
exp[NN+KD) - A cos(onwTn + Be)] (6.37)

0 0

where A 9 cos B e (6.38)

A0 sin B0 = iyre£]

A1 Cos B1 Re[C£] - Re[D I - Re[EJ + Re[F
(6.39)

A1 sin B1  Im[C I - Im[D I+ Im[EI] I+ Im[F]

K-I-£
and C9.  z.(n) zi (n) (6.40)

i=0

D£ AK-1-£  *
= z (n) b (n)exp(-j(i+£.)nW o ) (6.41)

i 0 Os

K-i

E i (n nex(jiIn 0Ts(.2

F£ 0b(n)1 2 (K-£)exp(-j0nw 0 ) . (6.43)

The essential features of processor structure for this problem are illus-

trated in Figure 6.3. The energy measuring terms in (6.36) and (6.37) are

not included since they will cancel in the formation of the likelihood

ratio.

The results of this section are summarized in Table 6.1.
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Conjugate Priors

The single frequency parameter conditional expressions summarized in

Table 6.1 can be used directly in calculating the likelihood ratio by simply

substituting them in (6.5) and (6.1) with A(z) given by the ratio in (6.9).

The expressions in Table 6.1 also are the fundamental components required

by the general array processor structure implied by (5.12) and illustrated

in Figure 5.2. Each sequential/conjugate block is an independent time

sequential processor for a single frequency using its own natural conjugate

prior. Conjugate priors are used since they are reproducing and thus lend

a certain amount of mathematical tractability to the problem.

Recalling from Chapter II, the existence of a sufficient statistic

for e implies the existence of a natural conjugate class of probability

density functions under p(z(n)le). From Theorem 2.1, 6(z(n)) is sufficient

for e if there exists

(1) a function g[6(z(n)),O] which depends on the observation only

through 6(,), and

(2) a function G(z(n)) which does not depend on 0, such that

p(z(n)li) = g[6(z(n)),_] G(z(n)) (6.44)

The parameter conditional expressions in Table 6.1 suggest the following

general form of 6

[Ao,B 0 ,...,At,BZ,...,A K-1BK-1]T (6.45)

and of g[6,e]

K-1
g[6,0] = exp[C I A£ cos(Inw T + B£)] (6.L,

=0
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.

where C is a constant and T represents T Or T depending on the particular

proLlem being considered. We see from Theorem 2.2 that (6.46) also defines

a reproducing class of densities under p(z(n)j _). Thus, conjugate priors

for these problems have th, form

K-1
exp[ I U cos(knu0 T-V,)]

p'(W 0T) = £=I (6.47)

f (numerator) dw0T

where U1 0 , : w , and T again represents T or Tn

Each sequential/conjugate block in Figure 5.2 forms a single frequency

marginal density based on its particular conjugate prior. The integral

required to average over p'(w 0 ) has a form similar to that in the denomi-

nator of (6.47). In general, this integral cannot be completed in closed

form and some numerical te.hnique must be used for its solution. Note the

following special case

1/ exp[A cos(w 0T+B)Jdw 0oT = 10(A) (6.48)

-T

where A > 0, IBI w i, and 10(.) is tl- modified Bessel function of order zero.

0. fg
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Single Frequency Parameter Conditional Expressions

A. Gaussian Signal of Uncertain Direct.on in Gaussian Noise (GUD)

K-i

A(z(n)w 5 ) . N xp S 10 zi(n)*zi(n)]a-- K" D+N xPN(N+K.S) .=0

K-1Sxk[ 2{ A Acos(tnwoTs+B)]
eXP[N(N+K.S) 0 s kL=I

Ii

where A! cos B£ = Re(C1 ]

A sin B,= Im[C1 ]

and C zi(n)* (n)
i=0

B. Signal Known E-:cept for Direction in Noise with an Additive Directional

Noise Component of Known Direction (SKED in NKD)

A(z(n)J w )  exp[- K[N(K-l)D) lb0(n)12
1 * NK-i

Re{z 0(n) b 0(n)- N(DK 1 zi(n) b (n)exp(-jinw0TnM
N 0 0 (N+K*D). 1i003.=0

K-i

* exp[ 2 AI cos(nw 0Ts + B I
t=i

where A cos B Re[Gtj - Re[H1 ] + Re[I ]

A1 sin B =-Im(G ] + Im[H ] - Im[I]

I

and G= z (n) b (n)

D K-i *O

H N(N+K'D) 0 zi(n) bO(n) exp(-j(i-I)nw on)

Table 6.1
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D I bo(n) 12 (K-X) exp(jtnw Tn )-N(N+K.D)

C. Signal Known Exactly in Noise with an Additive Directional Noise

Component of Uncertain Direction (SKE in NUD)

p(z(n)l nH H exp [N+(K-I)D]KI
0 N(N+KD) (n)]

lTN (K*D+N) =
ej D K 1 AO cos(£nw 0T+ B1

e[N(N+K.D) 0= n Az

and

p(z(n)l , T 1 r [N+(K-I)Dj K-1
ffNK-I (K.D+N) N(N+KDi0 1z

K-K

,N+(K-I)D z.(n) b(n)exp(
+7 FN -e+ K D) N= N+K-

where A 0 cos B0 =

0 0
Az sin B Im[C

A1 cos B1 = Re[C] - Re[D Re[E + Re[F£]

A1 cos B1 = Im[C] - Im[))I + IM[E£] + Im[F]
t. L -t-  ,

zn C£ zin zi+£(n )

i=O

AK-1-1 s
D£ L I zi(n) b0 (n) exp(-j(i+£)nw0Ts)

i=0

K-I
E_ zi(n ) bo(n) exp(-j(i-)nw t )i=L

F _lb b0 (n) 2(K-1) exp(_Jtnw 0T s)

Table 6.1 (continued)
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Chapter VII

GENERALIZED PERFORMANCE fl

The performance of a Bayes optimal processor is summarized by its ROC

curve. In the general case where uncertain parameters exist under each

hypothesis, knowledge about them is explicitly noted at the outset by an

a priori probability density function conditonal to H1 and one conditional

to H . The processor's performance then becomes a function of their

detailed shape. Often, the functional form of these densities is chosen

so that various levels of uncertainty are easily modeled and a family of

ROC's is reported. The question then arises: What performance would have

been achieved under different prior knowledge assumptions (particularly

when outside the class of densities modeled)? Or, more deeply: Does some

algorithm exist which will operate on a known ROC for a given pair of priors

to yield the ROC for a new set of priors? And, if not: Does a canonical

intermediate step exist between observation and likelihood ratio statistics

which always may be used as a starting point for the calculation of an ROC

based on an arbitrary pair of priors? The purpose of this chapter is to

pursue these questions. The discussion will use as a basis the fundamental

concepts of sufficient statistics and reproducing densities introduced in

Chapter II.

The ROC and Observation Statictics

In the evaluation of performance, both a decision rule (i.e., likeli-

hood rLtio plus threshold) and ab .ration statistics are needed. Consider
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the general case where uncertain parameters exist under each hypothesis.

IL~ The decision rule is written

f D
fe p(Rj-1 ,Hl)p(-1 ) d_1  1

Al(R) < -l (7.1)

feo p(RI,H 0)p(eo ) d% o

where R is a vector of observations, p(O ) and p(6_) are a priori probabil-
ity density functions of the uncertain parameter vectors 0 l e1 and

%C 00, and n is the decision threshold. The likelihood ratio can be

viewed simply as a transformation of random variables from the observation

space (typically of large dimension) to the one dimensional decision space

[0,-). It is the conditional distribution of A under H1 and H0 from which

the ROC is calculated (see (2.20) and (2.21)). Peterson, Birdsall, and

Fox (Peterson, Birdsall, and Fox, 1954) have shown

p(A{H ) = A p(AIH ) - (7.2)

Thus, only the density of A conditional to H0 need actually be obtained.

Owing to the large dimensionality reduction between observation and

decision spaces. the question arises as to what "information" is lost in

the mapping. ' jppose we are given an ROC and the general equation for

A(R) as in (7.1) for which it summarizes perfoomance. Now, consider a new

pair of priors p'(e1 ) and p'(%). Will the ROC under p(2.) and p(0)
1 -

provide us with sufficient infopmation to calculate the ROC under the new

prior knowledge? Birdsall has proven two propositions which relate to

this question (Birdsall, 1973)

(1) An ROC curve contains insufficient information to specify

the observation statistics that led to it, or even to specify

the statistics on a real decision axis that le. to it.
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(2) An ROC does contain sufficient information to specify the

statistics on the logarithm of the likelihood, ratio.

The second proposition guarantees that we can obtain the densities

p(lnAJH 1 ) and p(lnAIH 0 ) from just the information present on the ROC

curve. The first states that these densities are insufficient to specify

the observation statistics leading to them. A simple example will illus--

trate this last point.

Consider the detection of a signal known exac tly in white Gaussian

noise. Recall from Chapter II that performance for this problem is com-

pletely characterized by the detectability index

2 = 2E (z.22)
NO0

whe,:e E is the received signal energy and N0/2 is the noise power spec-

trum height. Clearly the observation 3tatistic- p(RIH I) and p(RIH will

depend on the exact shape of the signal and height of the noise power

spectrum. Note that the value of d2 depends only on the ratio of signal

energy to spectrum height. Thus, many observation situations can yield

the same ROC curve. Correspondingly, the information lost in the dimen-

sionality reduction from observation space to decision sj.-ace is the

detailed nature of the observation statistics.

Since the ROC is insufficient to specify the observation statistics

leading to it, the conditional statistics required in (7.1) prove to '-c

an impossible refinement. Thus, simply being given an ROC and the under-

lying priors p(6I ) and p(O) will not provide encugh information to

calculate performance under a new pair of priors p'(6 I ) and p'(6).

i;I
-1

-)

$
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The Role of Sufficient Statistics
[i Admittedly, attempting to calculate performance under a new, pair of

priors with only the original priors and their ROC curve as a basis is an
ambitious goal. But it does lead one through the visualization of A(R)

as a transformation of random variables and, more importantly, that the

direct mapping from observation space to decision space under A(R) isI [.
H "lossy."1

Consider a new situation. Suppose the performance of a particular

detection receiver is desired and assume there are uncertain parameters

under each hypothesis. In this case, the conditional statistics in (7.1)

will be available explicitly (i.e., their functional form). Once again,

view A(R) as a transformation of random variables. To compute performance

for a particular pair of priors p(2.1 ) and p(), the transformation through

A is completed to yield p(AIHI) and p(AIH O ) from which the ROC can be

determined. Now, if the performance for an entirely different pair of

priors p'(el) and p'(%) is desired, the transformation must begin again

with the observation statistics and proceed as outliaed above. The que. -

tion arises: Is there some well defined intermediate step between the

observation statistics and those of A which we might use as a basis (i.e.,

a new "observation space" of lower dimensionality than * for the computa-

tion of performance for any pair of priors?

The remainder of the discussion will ass.'me that p(RI, HI) and PI(R10Hd

admit sufficient statistics of finite dimension foi t, and -_0, respectively.

The expression in (7.1) becomes

Gl(R)Ie gl 1]R),%] p(O dO D
A(R) - 1 n (7.3)

G0 (R [8fW gI~R)% p(O de D
)f~l0 go- 0 -M0 ;0 -;0o
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where 6(R) and 6 (R) are the finite dimensional sufficient statistics as

-0

in (2.12). It appears from (7.3) that a plausible intermediate step would

be the space formed by the random variables GI(R)/Go(R), 61(R), and 6I(R).

This step occurs just prior to the averaging over p(2_1) and p( ) and is

illustrated in Figure 7.1. Recall that only the transfo.iation conditional

to H0 need be carried through due to the formula in (7.2). Two observa-

tions can be made

(1) Uncertain parameters under H1 only.

In this special case of the general problem, the observation

statistics conditional to H0 stay the same whet new prior

knowledge is assumed. Thus, the proposed intermediate

step is a valid point from which calculations of perfor-

ance for any prior knowledge can be started.

(2) Uncertain parameters under H and H
1 0'

Since the observation statistics under H essentially have

p(O ) embedded in them, the proposed intermediate step will-o
be valuable only when p(Q) remains fixed and p(O) alone

is allowed to change.

An Example: SKEP

As a specific illustration of the natural intermediate step discussed

in the previous section, consider the problem of detecting a signal known

except for phase (SKEP) in additive white Gaussian noise bandlimited to

W Hz. (Roberts, 1965). Since there is a single uncertain parameter and

it exists under the H1 hypothesis only, the likelihood ratio can be

written as
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A(R) exp[-d2/2]f exp i(x(R)coso + y(R)sino)]p( )d > n (7.4)
D2

where d2  2E
N0

E -L 2WT s2(t 2WT 2
2W i 2W [m(ti)cos ati_-0]

N /2 = height of the noise power spectrum
0

2WTx(R) I R(t i Wt i)Cos Wt i
W/2ENo i=1l

0

2WT
and y(R) - R(ti)in(ti)sin wt.

WvE 0 1=1
0

In the notation of sufficient statistics, (7.4) becomes

D1A ' -- f (7 .5)
A(R) ~~'g[6(R), ]!p(€)dM O

I D

2
where g[6(R),] = exp[-d /2 + d(6o(R)coso + 602 (R)sin )]

and 6(R) [ 01) _ [x(R),y(R) T

Conditional to HO , x(R) and y(R) are independent Gaussian random variables

with zero mean and unit variance. Thus, the desired intermediate density

as indicated in Figure 7., is

p(61H o) = p(x(R),y(R)IH0 )

= N(0,1) • N(0,1) (7.6)

where N(0,1) denotes a Gaussian density with zero mean and unit variance.
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We may now view p(_I5 0 ) as new "observation statistics" and performance for

any prior p(*) can be obtained by completing the indicated transformation

of random variables. Note that a significant dimensionality reduction has

taken place without loosing the ability to compute performance for an

arbitrary prior.

When a priori knowledge is chosen from the class of densities

exp[A 0 cos (B0-)]
P() 2 I 0(A 0 ) , 0 < 0 <_ 27 (7.7)

= 0 otherwise

Roberts has shown that the likelihood ratio becomes (Roberts, 1965)

2
exp[-d /2] 10(A )

01(A) 1(7.8)

2 B02 02
where A = [d'x(R) + A cos B 1 + [d-y(R) + A0 sin B ,

0 0 0 0

The processor- block diagram is shown in Figure 7.3. Note that the sufficient

statistic 6(R) = [x(R),y(R)]T is calculated jus-t prior to the incorporation

of the a priori knowledge.

Performance: Optimal and Suboptimal

The observations at the end of the second section pointed out the

usefulness of the joint density p(GI/G0 ,6I,4IH ) as an intermediate step

in the calculation of performance for an arbitrary prior. In general,

this step will enable us to calculate optimal performance only when p(2_1 )

is allowed to be arbitrary.

The intermediate step potentially may be beneficial in a different

sense when both p(81 ) and p() are allowed to be arbitrary. Although

optimal performance cannot be obtained, the processor's sensitivity to
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an accurate incorporation of a priori knowledge can be studied. In this

case, the intermediate density conditional to both H and H will be needed .70 1

since the secondary processor they feed is no longer optimal (i.e., the

observation statistics do not have embedded in them the priors utilized

in the processor). One such problem of potential interest would be where

the single uncertain parameter of noise power spectrum height exists under

H and HO.

A major benefit of a natural intermediate step between observation space

and the likelihood ratic is found in performance calculation via computer
simulation. When only the prior knowledge under H is arbitrary, the inter-

mediate step shown in Figure 7.1 is a valid point from which performance

calculations can begin. As in the SKEP problem, this step can represent

a significant reduction in dimensionality from that of the observation space.

The procedure would be to generate observation vectors R conditional to H0.

For each R, the values of G1/Go, 61, and 6 would be calculated and

retained (in effect, generating a discrete version of p(GIG0,61 6 IHO))

Then, for every p( l) of interest, the new "observation vectors" consisting

of (G1/G0',,§) would be used as input to the secondary pr×xessor shown

in Figure 7.1. The resulting collection of A's would be used to form an

approximation to p(A(H 0) and performance calculated.

I
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Phapter VIII

THREE SPECIFIC PROBLEMS AND THEIR PERFORMANCE

Detection performance in terms of the receiver operating characteristic

(ROC) curve for the following three specific problems now will be discussed

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)

(3) Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD).

Their parameter conditional joint density expressions were derived in

UChapter VI and summarized in Table 6.1. To evaluate performance, the

* three optiual array processors were implemented on the computer. Fr n

* Monte Carlo simulations of each processor, the distribution of A(z) under

H was obtained. This distributio, then was used to calculate the detec-
0

tion and false alarm probabilities which are summarized on the ROC curve.

Several important concepts in the calculation of performance for likelihood

ratio processors via computer simmulation are discussed in Appendix F.

Prior Knowledge

In each of the three problems, uncertainty arises in the location of a

signal or noise source. The array processor sees location uncertainty

reflected in terms of an uncertain time delay of the directional source

between adjacent elements. And, in turn, this corresponds to an uncertain

phase delay in the frequency domain where the processing is actually carried



86

out. Thus, a priori knowledge on location will be summarized by the prob-

ability density function p(w0T ) where T represents either Ts or T . Such

knowledge is explicitly incorporated into the likelihood ratio processor

through the averaging in (6.1) and (6.5).

The density p(c0 T ) was chosen from the natural conjugate class of

probability density functions for this group of three problems whose form

is that of several terms as in (6.47) multiplied together (one for each

i. I frequency index). Specifically

TN exp[A0 cos(NW T+B:< - WT
P0 ) - 2?r IO(A0  0 0- 0N -  0 - N

(8.1)
=0 , otherwise

where A0 2: 0$ -w < B <S w, and I0(-) is the modified Bessel function of order

zero. For all cases where performance is reported here, N = 8 and B0 = 0.

As Figure 8.1 indicates, varying the parameter A0 from zero to infinity

models a wide range of uncertainty from diffuse to very precise prior

knowledge. The array elements are assumed one half wavelength apart at

frequency Nw0 /2w Hz. Thus, (8.1) corresponds to a location uncertainty
over ±900 in physical angle from broadside to the array or ± in phase

at frequency NwJ0 /2w Hz. The parameters A0 and B0 should not be confused

with similarly denoted parameters in Table 6.1.

Performance

The remainder of this chapter will be devoted to the discussion and

comparison of performance results for the three problems enumerated earlier.

Each ROC is labeled by the A0 value corresponding to a particular level of

uncertainty. The array sizes investigated were for three and nine elements

as denoted by the parameter K. Both the Gaussian noise which is independent
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from sensor to sensor and the additive directional Gaussian noise have power

spectra which are white and bandlimited to N /2n Hz. Their spectral heights H
0

are denoted by N and D, respectively.

GUD

Performance curves for the processor which is to decide between presence

or absence of a Gaussian signal of uncertain direction in Gaussian noise

which is independent from sensor to sensor are given in Figures 8.2-8.6.

The five figures are for a wide band signal source whose power spectzum is

white and bandlimited to Nw 0/2v Hz. Its spectral height is denoted by S.

The likelihood ratio for this problem is given by

N
A(z) = fO T]- A(z(n)IWOTs)p(W,3Ts)dwoS (8.2)

O s n=O

where A(z(n0rs ) can be found in Table 6.1 A.

Note from Figures 8.2-8.4 that increasing location uncertainty leads to

a greater degradation in performance the larger the array size. The e- 'ted

value of the total signal energy processed in Figures 8.2 and 8.3 has been

kept constant to make this comparison more %"sible.

Figures 8.5 and 8.6 evaluate performance for a particular suboptimal

processor which has been placed in the same environment of uncertainty as

discussed above. This suboptimal processor has the estimate and plug struc-

11 ture as illustrated in Figure 3.4. Since the uncertain parameter of signal

source location exists under HI only, 8i is the sole estimate required. In

this case, the estimate is not data dependent and is fixed at 81 = (W 0) T 0.

The parameter conditional expression into which l is plugged is given by

N

_UJO I A(z(n)lwors) (8.3"
- 0n=O
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where A(z(n)w sT ) can be found in Table 6.1 A. The resulting processor is

a realization of that derived by Bryn (Bryn, 1902) with a front end consist-

ing of a bea!mformer looking broadside to the array. Note that even in a

relatively ui certain envir'onment, the suboptimal three element arrayI' li. _processor lous- not suffr greatly in performance loss. However, the sub-

ootimal nine e-. '" .ray processor suffers a significant drop in perfor-

i ,nce for all levels of uncertainty less than precise knowledge. These two

figures also :ld be compared to Figures 8.2 and 8.4. Particularly for

, rine elemeiut array, thesc results point out the necessity of properly

incorpora A"ng .. priori kno tledge into the array processor design.

SD in 'JKT)

Performance cuves are given in Figures 8.7-8.18 for the processor which

is to decide presence or absence of a signal known except for direction in

G~ in :. ,_.:L, ng of a component which is independent from sensor to

- sensor ant an additive component arising from a source of known direction.

The likelihood ratio for this problem is given by

N
A(z) = fOrs nT A(z(n)I)slP(WoTs) dw Ts  (8.4)

0sn=O

where A(z(n)lw T s ) can he found in Table 6.1 B. A single frequency signal

A is assumed at NwO/2n Hz. Its energy over the observation interval is given

by E = 2 h (N) 0o(9). The first five figures are for a noike component of

known direction of zero spectral height. This reduces the problem to the

known signal counterpart of the GUD problem previously discussed. Perfor-

mance for this special case of the optimal processor originally was reported

by Gallop (Gallop, 1971; Gallop and Nolte, 1974). Those resultq are not

identical to that reported here since Gallop assumed the zeroth array element

V. A W
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was located at the array center instead of the array end as is assumed here.

fThe remaining seven figures are for a noise component of known direction of

unit spectral height.

Note from Figures 8.7-8.9 that increasing location uncertainty leads to

1 [1 a greater degradation in performance the larger the array size. This is

particularly evident in Figures 8.7 and 8.8 where the total signal energy

j fi processed has been held constant.

Figures 8.1.0 and 8.11 evaluate performance for a particular suboptimal

}IL processor which has been placed in the same environment c.f uncertainty as

discussed above. This suboptimal processor has the estimate and plug

structure as illustrated in Figure 3.4. Since the uncertain parameter of

1 signal source location exists under H1 on'v, 1 is the sole estimate

required. In this case, the estimate is not data dependent and is fixed

at 0 = (Wos) = 0. The parameter conditional expression into which 8--1 0s S--l

is plugged is given by1N
A(z16) =T T A(z(n)jw Ts) (8.5)

where A(z(n) T) can be found in Table 6.1 B. The resulting processor is

a realization of that derived by Mermoz (Mermoz, 1964; Horton, 1969) with

i j a front end consisting of , bcamformer looking broadside to the array. For

both the three and nine element processors, significant performance degra- I
dation is suffered for all levels of uncertainty other than precise

2. knowledge. This is particularly evident the larger the array. Once again,

-" a comparison of these results with those in Figures 8.7 and 8.9 point out

the necessity of properly incorporating a priori knowledge into the array

processor design.

'* -'

.-
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An interesting comparison can be made between the optimal performance

. j, just discussed and that for the similar GUD problem reported in Figures

8.2-8.4. If performance degradation was due to spatial uncertainty only,

we would expect both problems to suffer a similar performance loss as the

level of uncertainty increased. Note that the GUO processor is clearly less

effected by location uncertainty than the SKED processor. Thus, spatial and

jtemporal uncertainty get mixed together. In effcct, it appears that the

Gaussian signal has such a large amount of unc.,vainty already inherent

within it that the addition of location uncertainty ',oe. little to degrade

detection performance.

The remaining figures in this section are for a directional noise source

K of unit spectral height. In Figures 8.12-8.16, its location is fixed such

that Nw0Tn = w/2. Figures 8.12-8.14 correspond to Figures 8.7-8.9. Note

that the addition of a directional noise source causes additional perfor-

mance degradation for all levels of uncertainty. This effect is less

noticeable in the nine than the three element array processor.

Figures 8.15 and 8.16 evaluate performance for a particular suboptimal.

processor which has been placed in the same environment of uncertainty as

discussed above. This suboptimal processor has the estimate and plug struc-

ture as illustrated in Figure 3.4. Since the uncertain parameter of signal

source location exists under H1 only, 81 is the sole estimate required. In

this case, the estimate is not data dependent and is fixed at 0 =
-l-

(WO^Vs ) = 0. The parameter conditional expression into which 0 is plugged

is given by

N
A(zl81 ) = TT A(z(n)lwo s ) (8.6)

n=O
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where A(z(n)P0 Ts) can be found in Table 6.1 B. The resulting processor is

a realization of that derived by Mermoz (Mermoz, 1964; Horton, 1969) with a

front end consisting of a beamformer looking broadside to the array and a

nullformer pointing towards the directional noise source's location. Note

that little difference is noticed between these results and those reported

in Figures 8.10 and 8.11. The addition of a noise source of known location

has a small performance degradation effect in comparison to the large loss

introduced by signal source location uncertainty.

h The remaining two figures illustrate the effect of varying the location

of the directional noise source for the optimal three element array processor.

Figures 8.17, 8.12, and 8.18 correspond to noise source locations suCi that

N 0Tn = 3w/4, w/2, and ff/4, respectively. In this sequence, the noise

, source's location is progressively approaching broadside to the array which

also is the mean value of the a priori distribution on signal source loca-

tion. Note that the A0 = 0 curve remains constant while a2. the remaining

* curves move closer to it as the difference between the noise source's

location and the mean value of the signal source's location becomes smaller.

1 " SKE in NUD

Performance curves are given in Figures 8.19-8.23 for the processor

wh'ch is to decide presence of absence of a signal known exactly in Gaussian

noise consisting of a component which is independent from sensor to sensor

and an additive component arising from a source of uncertain direction.

Thus, unlike the previous two sections, it is not the location of the

signal source which is uncertain. In addition, the resulting processor

is more complex than the previous two since averaging over the prior

knowledge must take place in both the numerator and denominator of the

likelihood ratio as shown below
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N

f TT p(z(n)lw , H )P )d0W n  (
WnnO0On 1 O n O n

^Cz)= O nn-O -(8.7)

wh ere p(z(n)0 TnH0)P( 0n0)d_0Tn
0°O . n=O -

where p~n0TnHn ) and p(z(n) 0 Tn,H0 ) can be found in Table 6.1 C. A

single frequency signal is assumed at Nw /2n Hz. Its energy over the obser-
0

vation interval is given by E = 2 b 0(N) b 0(N). Note that the figures in

this section correspond directly to Figure 8.12-8.16 for the SKED in NKD

problem with the locations of the signal and noise source reversed (i.e.,

NW M ?r/2). Thus, it will be possible to compare the relative

effects of signal versus noise source location uncertainty.

An interesting contrast with previous results is seen in Figures 8.19-

8.21. Note that increasing location uncertainty does not lead to a greater

degradation in performance the larger the array size. This is particularly

evident in Figures 8.19 and 8.20 where the total signal energy processed

has been held constant. An actual decrease in performance loss with

increasing array size is seen.

A second contrtasv with previous results is seen in Figures 8.22 and

8.23. They evaluate performance for a particular suboptimal processor

which has been placed in the same environment of uncertainty as discussed

above. This processor has the estimate and plug structure as illustrated

in Figure 3.4. Since the uncertain parameter of noise source location

exists under H1 and H02 both the 81 and estimates are required. In

this case, the estimates are not data dependent and are fixed at

-i _0= (wF(W ) 0. The parameter conditional expression into which 01
-rl - 0n1
and 0 are plugged is given by

nr-('( ... mm~m ' -'i- m l • m II '-i.
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TT P(z(n)PoT n,Hi)

A(zl8,eo) n= (8.8) ___TF p(z(n)6,Tn H0 )

n=O

where p(z(n)l 0tn , 1) and p(z(n) W0 nT nH 0) can be found in Table 6.1 C.

Similar to the previous section, the resulting processor is a realization

of that derived by Mermoz (Mernoz, 1964; Horton, 1969) with a front end

consisting of both a beamformer and nullformer. The beamformer is looking
-I i-

towards the signal source's location and the nullformer , pointing broad-

side to the array. Note that while significant performance degradation is

I suffered for all levels of uncertainty othe, than precise knowlrdge, the

loss is nowhere near as severe as in Figures 8.15 and 8.16 where it is the

signal source's location which is uncertain.

I

Performance Summary

The results of this chapter facilitate an understanding of the effect

of both signal and noise source location uncertainty on array processor

performance. Several observations have been made and they we- summarized

below.

, The detectabilities of a known form and Gaussian signal of uncertain

- location were compared. While both exhibited a degradation in performance

as the level of uncertainty increased, it was noted that the optimal array

iprocessor for a Gaussian signal suffered significantly less in this respect
than that for a known form signal.

1,. The remaining comparisons between optimal array processors were for

f-* pzroblems involving both a know form directional signal source and a

directional noise source. A question that arises immediately is wnich of

the two sources has a greater effect on detectability wher its location is

uncertain. For the E/N and D/ ratios investigated, it was found that
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uncertainty in the location of a noise source has a less serious effect on

performance degradation than a corresponding amount of uncertainty on the

location of a known form signal source.

Since performance results for two array sizes were investigated, the

effect of increasing the array size while keeping the level of uncertainty

constant could be studied. When there is signal source location uncertainty,

increasing the array size leads to a degradation in performance. In con-

trast, when it is the noise source's location which is uncertain, increasing

the array size does not lead to a degradation in pexiformance. In fact, a

slight increase was noted.

An appealing approach to array processor design when uncertain param-

eters exist is first to estimate these parameters, then plug them into the

parameters known likelihood ratio as if they were known exactly. The

performance of a particular class of such suboptimal processors operating

in the same environment of uncertainty as their optimal counerparts was

investigated. For this class, The estimates of signal and noise source

location were not data dependent and fixed at zero. The resulting

processors were realizations of those derived by Bryn (Bryn, 1962) and

Meri,,oz (Mermoz, 1964; Horton, 1969) each with a front end consisting of a

beaniformer and (when appropriate) a nullformer. In all cases., the sub.-

optimal processor suffered greater performance degradation for a given level

of uncertainty other chan precise knowledge than its optimal counterpart.

Especially as the array size grows larger, the results point out the neces-

sity of properly incorpoaring a priori knowledge into array processor design.
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Chapter IX

ADAPTIVE LEARNING OF AN ADDITIVE DIRECTIONAL NOISE COMPONENT'S LOCATION

As mentioned at the end of Chapter III, an appealing approach to an

array detection problem where uncertain parameters exist is to estimate

these parameters and then plug them into the conditional likelihood ratio

as if they were known exactly. When "good" estimators are used in the

structape illustrated in Figure 3.4, the processor is typically referred

to as being adaptive. Once again, however, it is not clear that piecing

together locally optimal tecbniques will yield global optimality when the

overall goal is good detection performance. The intent of this chapter is

to reiterate that when implemented sequentially, the optimal array processor

exhibits learning or adaptive features naturally. Specific cases of the

SKE in NUD processor will be used as illustrations.

Adaptive Optimal Array Processors

In the formation of the likelihood ratio, the marginal distribution of

the observables conditional to each hypothesis is needed. Assume the total

observation period has been broken into a sequence of incremental observa-

tion periods. Adopting the notation of Chapter V, our observables are now

the L vectors (z ,... ,z L). Suspending the conditioning to H1 and H0

1 L L . (p(z ... z_ IT p(zlZl,. (.)
'A i

Assumi~ig par3Tnete ' c nditional independence of the z i (see Chapter V)

A{
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, z1) = je p(z ) 7 z,. - ,.)p(e _ . ..,z.)d 1

where p(eIz~ - ,...,zl) is an updated version of the a priori probability
II density function of 8

_ ( i-i1D8 i.e .zi-2 . .#

'" ... i - , i-2 1 (9.3)
ptz IZ ,...,z')

The expressions (9.1), (9.2) and (9.3) are the sequential design equations

used tc form the marginal distributions required to calculate the likeli-

V hood ratio

1 L p(z1 1)zL.4,! .- ' - p(Zl,...,# IHo0)

Figure 5.1 illustrates the corresponding array processor structure. The

adaptive feature arises out of the sequential Bayesian updating of the a

priori knowledge of the uncertain parameter vector. In general, the numer-

- Iator and denominato;- equations in (9.4) must remain separated in the

updating sequence.

1, An Example: SKE in NUD

In this section, computer s-.mulations of the SKE in NUD processor for

several cases will be used as illustrations of the natural adaptive feature

of an optimal array processor when implemented sequentially. The uncertain

parameter in this case is the Gaussian noise source's location reflected

in the phase terrm _ = 0T n. The parameter conditional joinc density

expressions under H and H required in (9.2) and (9.3) are given by1 0
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P(zI10,H1  T P(z(n)wT,H1) (9.5)

1 n=0

~N

P(z1 ,H) N T (r)I0 r ,H0) (9.6)
n=0

where p(z1(n)0w Tn ,HI ) and p(zi(n)jW 0TnH 0 ) can be found in Table 6.1 C.

The superscript is omitted in Table 6.1 C since the expressions are the same

for all L incremental observation intervals.

Figures 9.1-9.12 illustrate single computer simulation runs of the

processor consisting of 13 iterations each. Since the uncertain parameter
exists under both hypotheses, two columns of the sequentially updated a

priori knowledge corresponding to (9.3) under H and H are recorded. Each
i 1

probability density function displays P(WOTN) = p(w0TnZni,... ,z) versus

WOTN = w 0Tn where ITER = i. The first density in each column (ITER = 0)

is "he a priori knowledge. A uniform prior of p(w0Tn) n 4/f for

--/8 S ir v/8 was assumed in all cases. The "MAX" value indicates the

maximum value of the particular density recorded. Between the two columns
of densities is a third column which indicates the iteration number ("ITER")

and the value of the likelihood ratio ("L") at the completion of that

iteration as given by (9.4) utilizing (9.1). The lower left hand corner of

each figure records the incremental signal energy processed ("E"), noise

power spectra heights ("N" and "D"), and array size ("K"). The noise spectra

are assumed white and bandlimited to 8w /2f Hz. The signal consists of a
0

single frequency at 8w /2w Hz. Its energy over one incremental observation
0

interval is given by E =2b 0(8)b 0 (8). The spacing between the array elements

is assumed one half wavelength at the frequency of the signal. The lower

right hand corner of each figure records the a priori probability density

I function parameters ("AO" and "BO", se, 1)), the true hypothesis in force

41
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during the simulation ("HI" or "HO"), and the true location of the noise

source reflected in terms of phase ("WOTN"). In all cases, WOTN = Tn 0

The first six figures report single processor runs for a three element

array; the last six do the same for a nine element array. The figures are

given in pairs. In the first, the true hypothesis in force is H0 ; in the

second, H1. All figures have a signal-to-noise ratio of E/N = 1. The

Unoise-to-noise ratio (D/N) has the values .01, .03, and .09. Note that even

though the noise-to-noise ratios investigated were relatively low, the

optimal processor was usually able to learn the noise source's location

(under the correct hypothesis). It is interesting that under the incorrect
L

hypothesis, the sequentially updated a priori knowledge often peaks up at

L the location of the signal source which in terms of phase was w = /16.

As these figures indicate, the optimal array processor exhibits natural

learning or adaptive features when implemented sequentially.

II
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Figure 9.1. Sequential SKE in MUD Simulation.
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Figure 9.5. Sqeta SK inNUD Simulation.



127

I1AX=i .27E0 l1AX147E

ITER--O

I [i L=1.OOE0

MtX=S .70E0 IIAX-=4-I

ITER=1 IE

L=4 .53E-2

X=3 .38EWMX36E

LU3.98E0

MRX-=.79EO MX35E

I, 1TER=5

-, IMAX-3 .03W L=3.932 fRX36E

I flEJ=7

] L=9 .82E3

MAX-3.23E0 IR=.3E

IrER=9
Lz8.98E8

ITER11

MRX=2 92EOMAX-±6 .09EO

1TER=13
LUZ.63E10

S 1-P1/8 0 We/ -P1/B 0 PUS8
P4 P(worN) vs. 14011 HI

Ei.1=1.00 00.09 RO=O.OO 830=O.0O
K~=3 Il WOTN=:0.00

Figure 9.6. Sequential SKE in NUD Simulation.



128

rOiX=1.27EO v.=I1 .27E0

4 flX=2.21E0 I1RX=2.2E

ITER--1 i
L=1 .22E-3

.&Xo MRX=3 .50W

ITER=3

flAX=3.45EO 
. ?R~.1o-

L=-1 04E-10

lifX=- 99E0 IIX=1 .74E1 L
L=6. iSE-16

ITER=9

IX6.1 lEO 1 TR15I4'.30E2

FL\2 a2E.2
-P1/8 0 PI/8 -P1/8 B U

E--1.00 ttb1.oog 9J=0.() HI~.0 0O0

JIO 40TN-0.00

Figure 9.7. Sequential SKE in NJD Simulation.



129

MAX1 .Z7EO flRX=1 .27E0

ITER-=O

L=1.OOEO

lIRX=2 .54E0 MRfX=2 .21E0

L=9 .69E0

FIFX=4 .24EU riX=2 .SOEO

1 TER=3

L=4 .62E6

IIRX:S.84E0 IIRX=3 .45E0

ITER=5

L=2.78E9

lIRXzI .13E1 IIRX=3 .99E0

.-944E11

lRX=1.63E1 lIX3.57E0

MRX=3.74EI LMAXE13 J 5

L=1.08E17 IR=. E

IRX=6.17E1 M 8 tiX=6.44E0

KOD PNO~TN) Ys. 14OTN I
E=10 t1=1.r00 0=0.01 A9=0-00 60-0.0O

K(=9 I IOM0k.00

Figure 9.8. Sequential SKE in IJUD Simulation.



130

M1X=1 .27EQ M'ii.7E
*~ 1TER=0

L=1 .OOEO

flRX=I -29E1 
A=14E

IrER~i

L=3 .38E-2

r 43~1 1 I TER=3

~~X~2 .OEI ~~L=3 -2E-7 lX3.7EJU

flRX 8 .2 E0 tRX4.31EZ

________________-=I I:.25E-16

HRX=6.Mf f-X=9 -b9E2

ITERI9 I

L:--O3E-:237

IM=91X98 98E0S8E

F I fER13F

-= 20E-26
-P1/8 0 PUB8 -P1/8 0 P1/OHO PcwOTn) Vs. WOUN HE--I.00 N~1..iot (y.:.03 qO0=O.Og HI .o

K=9 f3 W --0-00~

Figure 9.9. Sequential SKE in NUD Simulation.
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Chapter X

SUMMARY AND RECOMMENDATIONS FOR FURTHER RESERACH

Summary

This dissertation has taken a global approach to the processing of

informe:'on from an array of sensors. Essentially, the unprocessed outputs

of the individual elements have been considered as the observables. The

processor structure was allowed to evolve freely with the sole restriction

being the criterion of optimality. Such an approach has been emphasized

since it is not clear that the imposition of a structure on an array

processor which appeaco optimal locally (such as the utilization of beam-

formers, nullformers, and good estimation techniques) will facilitate the

overall goal of good signal processing.

i I Specifically, the array processors discussed were to decide if the

random processes observed at the array element outputs consisted of a

signal obscured by noise or noise alone. Any uncertain parameters in the

problems considered were treated as random variables and knowledge about

them was summarized by a priori probability density functions. The

resulting detectors were optimum in the sense of making a least-risk deci-

sion.

The first task, then, was to specialize the general results of signal

detection theory to the optimal processing of data from an array of

sensors. The general form of the likelihood ratio was derived based

upon observables consisting of the Fourier coefficients of the observed

random processes. For a stationary noise field consisting of a componere

1 - -I--I -- - .
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independent from sensor to sensor and an additive directional component,

the covariance properties of these Fourier coefficients were pursued as a

function of the observation period length.

Once the mathematics of the likelihood ratio has been written, the

Li optimal array processor can be implemented in various structures. Four

such canonical implementations were discussed: (1) one shot, (2) pseudo

[i estimator, (3) two step, and (4) sequential. The pseudo estimator

structure was shown to be the optimal counterpart of a popular ad hoc

L approach -to array processor design where any uncertain parameters are

L -first estimated, then plugged into the parameters known likelihood ratio as

if they were known exactly. The general formulation of the time sequential

structure revealed that the likelihood ratio can be realized by an

appropriate combination of single frequency components. Each is an

independent time sequential processor which utilizes its own natural

conjugate prior to achieve a certain degree of mathematical tractability.

Of particular interest were three specific problems involving either

signal or noise source location uncertainty

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)

(3) Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD).

Their likelihood ratios were derived and performance reported for several

levels of location uncertainty and two array sizes. Performance was stated

in terms of the ROC curve. Several observations were made. It was noted

that the optimal array processor for a Gaussian signal of uncertain

direction suffered significantly less in performance degradation as
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location uncertainty increased than the corresponding processor for a

signal of known form. For the signal-to-noise and noise-to-noise ratios

investigated, it was found when comparing the SKED in NKD and SKE in NUD

processors that uncertainty in the location of a noise source has a less

serious effect on performance degradation than a corresponding amounc of

uncertainty on the location of a known form signal source. Since perfor-

mance results for two array sizes were investigated, the effect of increasing

the array size while keeping the level of uncertainty constant could be

studied. When there was signal source location uncertainty, increasing

the array size while keeping the level cf uncertainty constant led to a

degradation in performance. No such performance degradation occurred when

the noise source location was uncertain (in fact, a slight increase was

noted). Lastly, the performance of a particular class of suboptimal array

processors operating in the same environment of uncertainty as their

optimal counterparts was investigated. For this class, an estimate and

plug structure was imposed with the estimates of signal and noise source

location not being data dependent.

Although an estimate and plug structure is appealing due to its explicit

adaptive characteristics, it was shown that the optimal array processor

exhibits natural learning or adaptive features when implemented sequentially.

Computer simulation runs of the SKE in NUD processor were used to illustrate

the Bayesian updating which occurs as an integral part of the sequential

structure.

Recommendations for Further Research

In the pursuit of a particular piece of research, it is not uncommon

for several new and interesting questions to surface. This work is certainly

no exception.
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Chapter V presented the formulation of the time sequential array

Lprocessor in general terms. The resulting detector structure illustrated

Lin Figure 5.2 consisted of several independent single frequency components.

Within the framework of such a decomposition, it would be interesting to

pursue the feasibility of a real-time implementation of the time sequential

array processor. Conceivably, each single frequency component would consist

of a separate minicomputer dedicated to processing the Fourier coefficients

at a single frequency index.

Another question of a more theoretical nature arises in connection with

the sequential Bayesian updating of an uncertain parameter's probability

density function. Under the correct hypothesis, estimators such as the

MLE (maximum likelihood) and MAP (maximum a posteriori) have well known

properties. But, what is their nature under the incorrect hypothesis?

For example, in Chapter IX it was noted that the a posteriori density of

noise source location would often peak up in the direction of the signal

source under the hypothesis opposite that actually in force.

Chapters VI and VIII presented detailed derivations of the likelihood

ratio and performance results for three specific problems involving either

signal or noise source location uncertainty. Their performance was compared

to a particular class of suboptimal array processors with an estimate and

plug structure to demonstrate the necessity of properly incorporating a

priori knowledge into array processor design. The particular class

studied was that where the estimates were not data dependent. A valuable

extension of those results would be the calculation of performance when

data dependent estimators such as the MLE or MAP are used.
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Appendix A

I ~ COVARIANCE ARISING FROM A SCALAR RANDOM PROCESS

The following derivation of the covariance between the Fourier coeffi-

cients representing a sample function of a scalar random process is taken

from Blachman (Blachman, 1957).

Consider the series expansion of a sample function z(t) from a zero

mean real random process over the interval (-T/2,T/2)

N 1/2z(t) = l.i.m. I z(n)(I!) exp(inwot) , tl < T/2 (A.1)

N n=-N

,1 where 2WI '°0 T-

1 1/2 T/2
and z(n) d-) f z(t)exp(-jnw t)dt (A.2)

-T/2

Thus, the covariance between any two coefficients can be expressed as

* 1 T/2 T/2
E[z(n)z(m)] = f / f / E[z(u)z(t)]exp[-jwo(nu-mt)] du dt .T -T/2 -T/2

(A.3)

Making the substitution t + T = u + T = u - t

E[z(n)z(m) = /2 fT/2-t E[z(t+T)z(t)exp{-jw0 o(n-m)t+nT]} dT dt
I -T/2 -T/2-t

(A.4)

Assuming z(t) is stationary (in the wide sense), E[n(t+T)n(t)] = R(T) and

1T/2 T/2-t

E[z(n)z(m)*] 7/2 fT/2-t R(T)exp{-jw [(n-m)t+nT]} dTdt
-T/2 -T/2-t 0A5

(A.5)
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By the Wiener-Khjnchin theorem

R(T) ~-f N(w)exp(jwT)dw (A.6)

where N(w) is the power spectral density function of the random process. L
Thus, (A.5) becomes

2n T/2 T/2-t -0 tecpj(n h)]dd tE[z(n~z(m)*] = -f f fNwepwCmn

(A.7)

Note that

T/2-tT/2-t
T12-1

_______exp[jT(-n-w +W)]1 1 epdT-nT)
-T2- (-nw,+wT7ePj(-w0+)T / 2 -t -T / 2 -t

- (n0-- )exp[-j(-nw +w)t ]{exp[jT/2(-nw tw )]-explj(T2-n W100 (T2(n 0±w]

- 2
exp[-jt-nw +w)]sin T/2(-nw +-W) (A.8)C-nw 0 --Y0 0

After interchanging the order of *'.zt-.gration in (A.7)

~~ I E~z(n)z(nl)f

CT/2 sin T/2(-nw +W)
f f~~-~-I N(w) exp[-j(-nw +w)texp[jw (m-.n)t] dt d(,

00T/2 s in T/2(-nw 0 +W)
N() -nw_-iww) exp[j(mw -w)]dtd (A.9)7r .T20 0

Using the relationship in (A.8) to integrate over t

E~~nz~))] -~I G1 )sin T/2(-nw 0 -w) sin T/2(mw 0 -W)E-~~zm f(Nnw 0  -y dw

(A.10)
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Making the substitution W xw0  4. x WW0

E[z(n)z(m)*] _ 2 w0 N(xw) sin w/w0 s-nw +XW0 sin w/w0(to-X0) dx
rT (-nwO+x0 ) (m 0 xWO)

Nfx0 sin w (x-n) sin x (-m)

_ 0 ) (x-n) s(x-m) (All)

The covariance between any two Fourier coefficients now can be written as[~.

E[z(n)z(m)*)= f N(xw 0) sinc(x-n) sinc(x-m) dx (A.12)

| sin ff x
where sinc(x) s i --

Itx

Note the Orthonormnal property of sinc(x)

f sinc(x-n) sinc(x-m) dx 6 (A.13)

where 6rn =fl

0, n m

ij

V
f.

- ,.--{,~--,-'" -~ ' ---
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Appendix B
ii

COVARIANCE MATRICIES FOR BANDLIMITED WHITE GAUSSIAN NOISE

This section contains a set cf five covariance matricies (Figures B.!-

B.5) which represent successive doubling of the observati.i period length

(Marshall, 1973). The Fourier coefficients representing a sample function

from the scalar random process are related by the expression

E[z(n)z(m)*] f N(xw 0)sinc(x-n)sinc(x-m)dx (B.1)

-0

where w = 2Tr

N(xwO ) = power cpectral density function of the random process

and sinc(x) = sin(wx)U"
The spectrum considered is tb-c of unit height white Gaussian noise band-

limited to W Hertz. In the first covariance matrix, the observation length

is such that W = .5w 0/2 or T = .5W. In the fifth covariance matrix, the

observation length is sixteen times longer (i.e., W = 8w 0/2w or

T = 8/W). Note how the covariance matr:ies become progressively more

diagonal in form as T is increased.
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I"

. 3 -2 -1 0 1 2 3 4 s 6

-5 .IL .00 .00 .00 .00 -. 01 ,OC .01 .00 .00 .00 .00 .0

-3 nu .0 ) .00 .0C -. 01 .01 .00 -. 01 .02 .CO .00 .C .Gu

.' .00 .00 .00 .10 .0( -. 02 .00 .01 -. 01 .00 .00 .00 .00

-3 .U0 .00 .00 .01 -. 01 .02 .AI -. 0 .01 -. 01 .00 .00 .00

-2 00 -.01 .1 -.01 ,k -.03 -.01 .03 -. 01 .01 -. 01 .01 CO

-1 -.01 1 -.0 .02 -.03 .09 .06 .06 .03 .02 .01 -.01 .01

S .00 .00 .00 .01 -. 1 .06 .77 .0 -.01 .01 .00 .00 .0

.01 -. 01 .01 -.02 .03 -. Cb .06 .08 -. 03 .02 -. 02 .OJ -. 01

2 .GO .01 -. 01 .01 -. 01 .03 -. 01 -. 03 .01 -. 01 .01 -. 01 .00

3 .00 . .O -.01 .01 -.02 .01 .02 -.01 .01 .00 .00 .00

4 .00 .00 .0') .00 -. 01 .nl .00 -. 02 .01 .00 .CO .00 .00

S .0 .00 .00 .00 .01 -. 01 .00 .01 -. 01 .00 .or, .00 .O

6 .00 .00 .00 . .00 .01 .00 -. 01 .00 .00 .00 .00 .0

*' 7 1S0.0 0.5

Figure B.1. Covariance atrix No. 1.
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1Jz

.1.1

-L -4 -3 -2 -1 ~

-6 .00 .00 .00 .00 01 -. 0 .(,C .02 -. 01 .0C . .0 . .0

-5 .00 .00 .00 .00 --. 1 .0 .0 *.C3 .01. .30 .00 .00 .01

-4 .n0 .00 .00 o.CL .0, -. 016 -. 01 .0-6 .. n! .0c .0 .00 .UO

-3 .-0, .00 -. 01 .AI -. 02 .06 .01 -. 05 .02 .0-1 .0() .90 .0

-2 .01 -. 01 .01 -. 02 .03 -.10 -.03 .07 -.03 .02 -.O .01 -.01

.1 -.03 .03 -.C4 .06 -.10 .47 .16 -.16 .07 -.05 .014 -.03 .02

0 .0 .00 -. 01 .01 -.03 .16 .90 .16 -.03 .01 -. C1 .00 .05

1 .02 -. 03 04 -. 0S ..A7 -. 16 . 47 .? -. 10 .Ob -. C4 .03 -. C,

2 -.01 .01 -.01 .02 -.03 .07 -.OS -.10 .3 -. 02 .01 -. 6± .1 Z

3 .00 .00 .00 .00 .02 -.G5 .01 .0 -0? .01 .O.L .00 .00

4 .00 .00 .00 .00 -.C1 .011 -.01 -.0' .0 -. 02 .00 .00 .00

5 .00 .00 .00 .00 .01 -.03 .00 .03 -.41 .00 .00 .00 .0

6 .00 .00 .00 .00 -.01 .02 .0 -. 03 .01 . 0 .00 .C3 .oo

-1.0 U.0 1.0

Figure B.2. Covariance Matrix No. 2.
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i:k
fn

-6 -5 .4 -3 -2 -I 0 1 2 3 '. 5 6

O .00 . or .00 .U3 .04 C0 -. Ce .01 -. 03 .OC .00 .00 .Oc

J . 65 .c .00 .0. -. 05 .OC .01 -. 02 .03 .00 .00 .uO .00

.00 .00 .C.., -. 03 .07 .00 -. 01 .02 -. 04 .00 .00 .00 .00

-3 .30 .02 -. 03 .' -. 11 -. 01 .03 -. 03 .05 .'0 .00 .00 .00

- 2 .04 - .5 .07 -. It .49 .14 -. 10 .08 -. 10 .05 -. 04 .03 -. 03

-1 .0 .00 .nC -. 01 .14 .93 .05 .05 .08 -. C3 .02 -. 02 .01

.0 ')1 .01 -.01 .03 -. 10 .05 .9: .05 -. 10 .03 -. 01 .01 -. 01

1 . -. 02 .02 .. 03 .o .05 .05 .3 .14 -. 01 .00 .00 .OC

2 - 03 .3 -. 0u .05 -. 10 .09 -. 10 .14 .49 -.l .07 -. 05 .04

- .00 00 .00 .00 .05 -. 03 .03 -. 01 -. 11 .04 -. 03 .02 .00

4 .00 .00 .00 .10 -. 04 .02 -. 01 .00 .07 -. 03 .03 .00 0o

5 .00 .00 .00 .03 -. 02 .01 .00 -. 05 .02 .00 .00 .00

6 .00 .00 .00 -. 03 .01 -. 01 .00 .04 .00 .00 .0 0

03.

I- 'C

-2.o 0.0 2.0

F!,N

Figure B.3. Covc'riance Matrix No. 3.

'Id
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:- I -7 - - .4 -3 -2 -1 04 1 a 4 6 9 9

, -, .01) .01 .00 00 .00 -. 04 .o .:.m .0o .n1 -. 01 .JI -. 01 .02 .00 .00 .00 .00 .0.3
. I

-P .00 .00 .UO .00 .00 .04 -. '1; .04) .('Q -.. O .O -. 01 .01 -U2 .AG .00 .00 .00 .*4fl

-s .00 .0) .00 .0^ -.0 5 . G0 W. 0 -. 01 .nI .01 .01 -. 0 03 .00 .00 .00 .00

0- . .0, .00 u -. 3 .07 - ' -.01 ..'1 -. 0' .0 -. 02 -. 02 -.03 .00 .00 .00 .0 0.

S- .00 .00 .u? -. 01 .01) -. 12 N.i ) -. ,'- .^ 2 -. 02 .02 -. 03 .04 .00 .00 .00 .0.) .. 0

I- .0o .04 -.GL .oi -. A ,, .14 3 -. 0,3 .37 -. 06 .J3 -. O5 .05 -. 06 .04 -.13 .03 -. 02 .02

S-3 .,"I -. 01 .01' -. 01 -. ()1 .13 .94 Oil -1 .04 .. 0:3 .03 -. 03 .05 -. 03 .C2 -. 07) .01 -. 01

.00 .00 .00 -. 01 .02 -. 09 .04 .97 .0J -. 03 .03 .. 03 .03 -. 05 .02 -. 02 .01 -. 01 .01

-" .00 .00 -. 01 .01 -. 02 .07 -. 0'4 .0 .97 .03 -. 03 .03 .. 13 .01 -. 02 .02 -. 01 .01 -. 01

t 0 .0. -. 01 .01 -. 01 .02 -. 00 .03 -.n3 .03 .97 .03 -. 03 .03 -. 06 .02 -. 01 .01 -. OL .01

1 -. 01 .G1 --. 01 .02 -. 02 ..05 .03 .03 ... 03 .03 .97 .03 -. 016 .07 -. 02 .01 -. 01 .,10 .00

S: .01 -. 03 .01 -. 0. .02 -. 05 .03 -. 03 .03 -. 03 .03 .97 .0G4 -. 09 .02 -.0. .00 .00 .,oi)

3 -01 .1 -.02 .02 -.03 .05 -.03 .0, -. 03 .03 -.(,4 .04 .24 .13 -.01 -.OL .0 -.111 .01

'. 0.2 -.02 .03 -.03 .04 -.06 .05 -. 0 .05 -.06 .07 -.00 .13 .49 -.12 .07 -.05 .04 -. (114

5 .00 .00 .00 .00 .00 .04 -.03 .02 -.02 .02 -.02 .02 -.01 -.12 .0:9 -.03 .02 .00 .00

S .00 .00 .00 .00 .00 -.03 .02 -.02 .02 -.01 .01 -.0. -.01 .07 -.03 .00 .00 .00 .00

t 7 .00 .00 .00 .00 .00 .03 -.02 .01 -.01 .01 -.01 .00 .01 -.05 .02 .00 .00 .CO .00

8 II .00 .00 .00 .00 .00 -. 02 .01 -. 01 .0! -. 01 .00 .00 -. 01 .011 .00 ., .00 .00 AD

S9 .00 .00 .: .00 u .02 -.01 .01 -.01 .01 .00 .00 .01 -. 04 .00 .00 .00 .00 .00

iN

-4.0 0.0 '4.0

Fig, .4. Covariance Matrix No. 4.
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-t -8 - -' -" -4 -2 0 1 2 3 ,7 a )

- 0 -.12 .0 .01 -. 02 02 -.02 .o? -. 02 .02 .0 .02 A0 .02 -.C. .Of, ..01 02 .O

-9 -17 .41 .13 -. 04 .05 -. 05 .11, -. 4 04 -. 01 3 -.,& .00 .03 .03 -. 03 .- 3 -. 0) .02

-A . L .1 .95 .0. -. W,. .03 .i .02 -. 02 C2 .10 .02 -. 02 .0, -. 02 02 -.02 .03 -.02

.31 -.0 . .97 0. -.02 .0: •.03 .00

-5 -. ,2 .06 -. l .02 . q. .02 -. 0 .0; -. 02 .01 .01 .C," -. 01 .01 -. 01 .02 -. 02 .0J -. 02

- . -. 05 .0 U .02 02 .99 .02 -It .6; -. 01 ..! -. OL .0! -. 01 01 -.02 .02 -(13 .02

.3 -. ,12 A's -. 03 A-2 -. 37 .02 .4. .01 -.41 .01 .,el .91 -. 01 .01 -OL .02 -. 02 Cj .00

2 .02 .. 4 .02 -. *2 .02 -. 03 .01 ."? .',1 -. 01 .01 -. 01 .01 -. C1 .01 -. 02 .02 -. 03 .02

-i -. 02 .04 -. 01 2 -.. 12 01 - .01 .01 .91 .C! -. 01 .01 -. 01 .01 -. 01 .02 .00 .03 -. 02

91 0 .02 -. 03 .0, -.')" .0. -01 .31 -.O .31 .9? .01 -. 01 .^1 -. 01 .01 -. 02 .07 -. 03 .02

1 -. ,2 .03 .03 .0. -. 01 .01 .. 01 o - 02 .0' .q9 .01 -. 01. .AI .02 .02 -. 0 .C4 -. 02

2 .0, -.. 3 .C2 -. 12 .0., . n1 .0 - .01 ..", -. ')1 .01 .9 .;1 -.O .02 -. 02 .02 -. 04 .02

3 .00 .03 -. 02 .32 -.01 .0i .. ') .Q 1 .01 .1 -. 01 .01 28 .02 -. 02 .02 -. 03 .04 -. 02

4 .02 -. 03 .C2 -. 02 .01 -. 01 .0.1 -. 01 .Ci -. 01 .0. -. 01 02 .018 .02 -. 02 .03 -. 05 .02

5 -,C2 .03 -. 02 .02 -. 01 .01 -. 01 .01 -. 01 .01 -. 02 .02 -.02 .02 .98 .X2 -. 03 .06 -. 02

6 .0) -. 03 .02 -. 02 .02 -. 02 .02 -.. " .02 -. 02 .02 -. 02 . .? -. 02 .02 .97 .(14 -. 03 .01

I " -. 02 .03 -. 07 .0". -. 02 .02 -. 02 .02 .00 .02 -. 02 .;2 -. 03 .03 -. 03 0'. .95 .13 .00

6 .02 -. 03 .03 -. 03 .03 -. 03 .03 -. 03 .03 -. 07 .A4 -. 04 ..* -0..OS .06 -. o .l 9 -.12

* \

9 .02 .02 .02 .00 -. 02 .o2 .00 .02 -. 2 .02 -. 02 .02 -. 02 .02 -. 02 .01 .00 -. 12 .05

'. . .......

;aa

': j
; Iiif

j ~~-8.0 d"3'

i
* I

IFigurG B.5. Covariarnce Marix !o. "<.
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Appendix C

COVARIANCE ARISING FROM A VECTOR RANDOM PROCESS I

Consider the vector of sample functions z(t) from the zero mean

stationary vector random process observed as the collection of outputs from

all the array elements. Appendix A has already derived the relationship

between the Fourier coefficients representing a single element's output.

When the noise field contains an additive directional noise component, the

Fourier coefficients arising from the outputs of two different array ele-

ments will become related since a portion of the random process observed

at one element simply will be a time delayed version of that observed at

another. Let

z (t) d£ (t)

and zk(t) = d (t-T£k) (C.1)

where T k is the time delay between the Zth and kth elements of the

directional noise component d (t). The Fourier coefficients representing

each observed waveform are

i~~ z£n 1 1/2 T/2

-t/2 dX(t)exp(-jnw 0 t) dt (C.2)

1/2 T/2~.1
z ekx(m) = 1 /(t-T2k)exp-jmwot) dt

-T/2

= exp(-jmwo£k T (.1)1/ /2T d (t)exp(-jmw t) dt.
-T/2-T Lk 

(C.3)

Thus, the covariance between these two coefficients can be expressed as

~" 7A-
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E[z k(n)z (TO I= exp(-jmw 0 T)Y

ST/2-T Ik fT/2
fT/2" ¥ T/2 E[d (u)dg,(t)exp[-jw 0(nu-mt)] du dt

Tr/ 2 -Tk -T/2 (.)

The remainder of the derivation is similar to that pursued in Appendix A

with the following exceptions

(1) (A.6) becomes

R(T) = f D(w)exp(jWT) dw (C.5)

where D(w) is the power spectral density function of the directional noise

(2) (A.9) and (A.10) become

E[z (n)z k(m)j 'k] exp(-jmw OTk)

1 T/2-T sin T/2(-nw +w)i 0/T D(w) (_nwo+W*% exp[j(mwb-w)t] dt dw

-T/2-T~ 0k

exp(-jmw 0 Tk)

0 sin T/2(-nw 0+w) sin T/2(mo -W)

T D(w) (-F , - exp[-j( m-W)T d
7r (n 0 +W W0 _)0

(C.6)
and (3) (A.12) becomes

E[z (n)z k(m)*IrTk] exp(-Jm0 tk)

f D(xw )sinc(x-n)sinc(x-m)exp[-j(x-m)(- )27r dx. (C.7)
'10 T

An interesting special case of (C.7) occurs when D(xw0 ) is white

(i.,e., D(xw 0 ) is not a function of xw 0 ) and n m. Setting D(xu 00 D
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coi*1 2 t.

E[z£(n)zk(n) ITk] exp(-jnw0t k) • D f sinc (x-n)exp[-j(x-n)(--k )27r]dx
I k zk OT9, -00

exp(-jnw0T k) * D f sinc (f)exp[j2rft]df (C.8)

where f x - n and t = T k/T•

Note the Fourier transform pair

AA(t/T)== AT sin2 fT (C.9)

AT

A-

f.

-t T- /T 1/T

Thus
, Tk

E[z (n)zk(n)IT~k] = exp(-Jnw0t~k) .D { -- }. (C.10)
9 -1 0 1

II
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Appendix D

COVARIANCE BETWEE. ADJACENT OBSERVATION VECTORS

The total observation period now will be broken into several smaller

incremental periods. Thus, the vector of sample functions observed at the

outputs of all the array elements will be represented by a sequence of

observation vectors z . In this section, the covariance between the Fourier

coefficients of adjacent observation vectors will be derived. Assume the

noise field consists of a portion which is independent from sensor to

sensor plus an additive directional noise component. Let

zi(t)= n (t) + di(t)

and Zi+ I  n +lt) + di+1 (t-T (D.1)

n 3. (tiT) + dl(t+T-T k

where n (t) and nk +l(t) are the portions of the observed waveforms due
ikdi(-)

to the independent noise, d (t) and d+ (t-T ) are due to the directional

noise component, and Tik is the time delay between the .th and kth

elements of the directional noise. The Fourier coefficients representing

each observed waveform are

(n (1) f [nM) + d*(t)] exp(-Jnwot) dt (D.2)
-T/2

i+l, 1 1/2 T/2 .i.
zk Cm) C2) f [nk(t+T) + d1 (t+T-T )]exp(-jowt) dt

T -T/2

777
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11/2 3T/2
= exp[-jmw0TI • (7) f nk(t) exp(-jmwot) dt

0~ T/2

+ exp[-jm 0(T-T£k. 
1 / 2  3T/2-T£k

exp-jw (-T k I.T d I(t)exp(-Jmw 0t) dt

T/2-T£

(D.3)

Assuming the independent and directional noise are independent, the covari-

ance between these two coefficients can be expressed as

E[z£(n)i )+l(m)*Ik exp[-jmw0(T-Tk)]

. ()i /2 3T2-Tk /2E[n,(t)nk(u)+dl(t)dl(u)]

T T/2-T k -T/2

exp[-jwo(nu-mt)] du dt . (D.4)

Note that E[nl,(t)nl(u)] = 0 , k k.

The remainder of the derivation is similar to that pursued in Appendix C

with the following exceptions

(1) (C.5) becomes

'OD
R(T) = f [N(w)+D(w)] exp(jwt) dw (D.5)

(2) (C.6) becomes

i i+l
E[z (n)zk  (m) IT ] = exp[-jmw0(T-T k)J

sin T/2(-nw +c) sin T/2(m0 -c)
2 f0 0 X[jWM tT d
T-0_ [N(w)'6Lk +D(w)] (_Tnw0 +W) (MWo_) exp[-j(0-m -

i, £ k (D.6)

where 6 k = 0 k

x~ ~ ~~ ,-- no r tk C
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and (3) (C.7) becomes

E[zi(n)z i+l. (m) *AkjLw (T-TL zk  L Tk] L 0 1x[JoTTk)

a* T[; I[N(xWO).a k+D(xwO)]sinc(x-n)sinc(x-m)exp[-j (x-m)(1- Zk)2w] dx.

(D.7)

[ In a fashion similar to Appendix C, an interesting special case of

(D.7) occurs when both N(xw0 ) and D(xw0 ) are white and n = m. Setting

N(xw ) N and D(xw ) D
0 0

Eznzk kk Ir

• sinc 2(x-n)exp[-j(x-n)(1- T )27] dx

expE-Jnw 0(T-T ,kk [N.6 R +D]

U2
* sinc (f)exp(j27ft) df (D.8)

where f x -n and t /T -.
Zk

V .Thus, making use of the Fourier transform pair in (C.9)

Si+i 1 T1k.EEz (n) (n) IT~k) exp[-Jnwo(T-Tk)) •N 6 £k+D]

-1 0 2

I (D.9)

A I.
r'

L
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Appendix E

MATRIX IIIVERSION

The covariance matricies encountered in the problems discussed in

Chapter VI can be inverted using a technique due to Bartlett (Bartlett,

1951). Let the matrix to be inverted be of the form

A B+cdZ" (E.)

where A and B are K x K matrices and c and d. are K-dimensional column

vectors. Proceeding formally

A (B + c )

=B-I1{1 - c d*B-I1 + (c d *B-)-..-1 -i- 12

B- 1 B-1 c d*B-{1 - d*B lc + (d*B-lc)2

where we note that d B- c is a complex scalar. Summing the geometric series

completes the derivation

1:-1 -. B -1 .*-i
A B, B L _ (E.2)

-- 1 + d-

This result can be extended as follows. Let the matrix to be inverted

be of the form
* fZ

A B + cd + ef

A + ef (E.3)

where e and f are K--dimensional column vectors. Thus, utilizing (E.2)

A - ef A -
A-1 = A- 1 - L -- (E.4)
- -0 1 + f*A le

-0o
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f Appendix F

L THE CALCULATION OF PERFORMANCE FOR LIKELIHOOD RATIO

PROCESSORS VIA COMPUTER SIMULATION*

A complete description of an optimum detector includes not only the

likelihood ratio A but also the processor's ROC(receiver operating charac-

teristic) curves. The false alarm probability PF and detection probability

P are
D

P= f p(AIH 0 ) dA (F.1)
F n 0

and

PDn f  p(AIH) dA (F.2)

n

where n is the detection threshold value and p(AJH O) and p(AIH I are the

probability density functions of A under the two mutually exclusive and

exhaustive hypotheses H1 that a signal is present and H0 that it is not.

Peterson, Birdoall, and Fox (Peterson, 3irdsall, and Fox, 1954) have shown

that

p(AIH) Ap(AfH 0). (F.3)

Thus, PD may be written equivalently as

P D = f Ap(AIH 0 ) dA (F.4)

The expression (F.4) is particularly valuable when the densities of A

under the two hypotheses cannot be determined analytically. Typically, one

The text of this appendix has been accepted for publication in the IEEE
Trans. on Information Theory (Hodgkiss and Nolte, 1975).



then carries out a Monte Carlo simulation of the optimum processor and from

his results forms estimates D(AJH 0 ) and p,(AIH 1 ) of the desired densities.

We see that (F.4) implies that only the density under H0 actually need be

obtained. One clear benefit of this approach is eliminating the need to

simulate the signal (which may contain uncertain parameters) along with

the noise to provide receiver input under H . Here we make the distinc-

tion between the optimum processor which contains both signal and noise

parameters and the simulated input to the processor which may consist of

noise alone or signal plus noise depending on whether the true hypothesis

is H0 or HI.

Note that (F.4) places a great deal of emphasis on the upper tail of

p(AIH ). An equivalent expression is
0

PD = 1 - f Ap(AIH O ) dA (F.5)

0

For many problems, particularly those whose underlying statistics are

Gaussian, p(AIH 0 ) will have both a large portion of its probability mass

concentrated in the region A 5 1 and a long, slowly decaying tail extending

to infinity. We would expect any computer simulation to generate only a

few observations in this extended tail region. Any calculation which

emphasizes these points (such as the first moment) will be strongly affected

by their exact location. In this case, the emphasis arises out of the

multiplication of p(Aj O) by A. Thus, (F.5) is proposed as a more desirable

means of calculating PD than (F.4) from the standpoint of utilizing numerical

simula-ion results since it avoids heavily weighting the tail region as much

as possible. A more quantitative rationale is discussed in the appendix.

Summarizing the relevant equations for estimating the ROC we have
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PF=fn(AIH0dA (F. 6)

" = I f A^(AIH o) dA (F.7)
D; I 0|. 0

C J where the circumflexes denote estimates of the true values.

If we had been unaware of the ' )ng upper tailinstead of (F.7) in calcu-

lating the ROC we might have used
A -^

= ^h(AIH ) dA . (F.8)
rf

Note that (F.7) may be rewritten as

Ca

P= 1 - f AP(AJH o) dA + f Ap(AIH o) dA
0 n

I 1-E{AI+ P. (F.9)

where i[{AlH 0} is the first moent of p(AI0).

The following example will illustrate the error incurred in usipg

(F.6) and (F.8) instead of (F.6) and (F.7). We consider the problem of

detecting a Gaussian signal in Gaussian noise in which ihe covariance

matrices are diagonal and the samples have equal variances, as discussed

by Van Trees (Van Trees, 1968). The likelihood ratio is

K11/2 a 2 H1
() expR < n (F.1O)

JKI /22 2 an 2  a e h nos anHiga

2 2where the Ri are the received data, an and asre the noise and signal

variances per sample, and Y0 and KI are covariance matricies. As a

specific problem, we w'_i investigate the case where M = 2 and a2la2 = 4.
S -.
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ROC's resulting from 25 Monte Carlo simulations of N 2000 runs each

were calculated. The output of each run was a single value of A con6:tioned

to HO, not just a sufficient statistic. The density p(AIH 0 ) was non-negative

and its zeroth moment was constrained to be unity. No constraint was placed

on the first moment. False alarm and detection probabilities were calculated

as follows

PF N

P^ E A (F.12)

where the summations extend over all A > n, and

D 1
PD = 1 -v A (F.13)

where the summation extends over all A < n. The mean value ROC's are shown

in Figure F.1 along with two representative 95% confidence intervals on

detection probability. The triangles represent mean (',P) points cal-

culated using (F.12) and (F.11); circles represent mean QPDPF) points

calculated using (F.13) and (F.11). Note particularly the large variance

associated with calculating detection probability via (F.12) as opposed to

(F.13). A detailed account of P., P', and P means and variances for the

threshold values investigated is given in Table F.1. The mean (PDPr)

points describe an ROC that is essentially equivalent to known analytic

results (Van Trees, 1968) while the mean (P ,PF) points differ significantly.

Appendix

A theoretical model of a standard histogram cstimator for p(A[H O) also

suggests the use of (F.7) instead of (F.8) for the estimation of detection

probability. As a specific example, the same Gaussian signal in Gaussian

noi3e problems dis-ussed in the text will be used.

-k- ..-- ~---~--~.
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11C

K 0.
- 95% confidenceA

0.8 A
A A

J 0.7-A

0.6- A

A

0.5 A

D A0.~. 95 confidenceP

A 0.3-A~

0 PD ad PF (mean values)
0.2

A PL and P F (mean values)

Pand PF (Van Trees, 1968)

0:

0 0.1 0.24 0.3 0.4~ 0.5 )J.b 0.7 0.8 0.9 1.0

Figure P.1. Mean ROCts via Computer Simnulation.
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PF' PD, and Means and Variances

Threshold(n) PP

mean var. mean var. mean var.

.200 1.000 .000 E-04 .868 .143 E-01 1.000 .000 E-05 _

.218 .900 .502 .847 .144 .979 .220

.239 .799 .717 .824 .144 .956 .333

.266 .697 1.420 .799 .145 .931 .780

.301 .59/ 1.490 .770 .146 .902 .857

.3418 .495 1.500 .737 .144 .809 .941

.416 .395 .716 .699 .143 .831 .486

.524 .298 .615 .650 .141 .786 .832

.725 .200 .368 .594 .142 .726 1.030

.912 .150 .428 .554 .143 .686 2.346

1.262 .101 .292 .501 .143 .633 2.474

2.197 .050 .202 .419 .139 .551 7.652

3.825 .024 .085 .344 .141 .476 8.544

Table F.1I

.- - .... , '." ; '°" ."_ " :- -- o, ,' - .a As* 4 . .., , ;,., . .. . ... .. .. . . .: ...; / -, , ,-0 .
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Let p(AJHO) be our histogram estimator of p(AJH O) consistiLg of K 250

cells each of width AA = .2 and an end cell representing all probability

beyond the truncation point T = 50. The distribution of observations in the
° .th

• th cell is binomial with parameter p. and, as a simplification, the distr_-

butions will be assumed independent from cell to cell. (In . LUality, the

joint distribution of observations in all cells is a multinc, oal in the

K + 1 parameter family of distributions.) The discrete versions of (F.6),

(F.7),and (F.8) are

^ nK-i-]

X .1 0  (F.15")
i=l

n11

K+1

ir7 A P.1H0  (F.16)D" i L. t

where A. and P. IH0 are the likelihood ratio and false alarm probability110

.th
associated with the i cell and il' is the cell identifier corresponding

to a threshold value n.

Our comparison of (F.15) and (F.16) will consist of calculating RGC's

based on each and evaluating var(PD) and var(P;) for various values of n'.
DD

The equation resulting in the larger value of bias and variance will be con-

sidered the least desirable of the two. For a single cell

var(P. IfH) = 1
1 i( (P. 17)

w are N equals the total number of observations. Since independence between

cells is assumed
nI -i

var(Pi A pi P -i)  (F.18)

K+I 2 1var(Pl) :i ' A - N p [ Ik p i ) M 1F.9.)
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Using a known analytic expression for p(AIH 0) to derive values of p, il

(Van Trees, 1968), the ROC's in Figure F.2 were calculated. Also shown

are two representative 95% confidence intervals on detection probability.

Note particularly the large variance associated with calculating detection

probability via (F.16) as opposed to (F.15). A detailed account of PF5

Pt, and PD along with their variances is given in Table F.2. This ana-

lytic investigation complements the empirical results of the Monte Carlo

simulation study. Both suggest that the calculation of detection proability

with the aid of (F.3) is less biased and less variant when using (F.')

instead of (F.8) for data arising from a simulation of the likelihood ratio

under H0.

I'

:1
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1.0 I I I I

0.9.

10.8
0.7

0.6-

0.51

PD A 95% confidence PI
D D

0.4

0.3-

o P and P
02- D F

A PL and PF

P and P (Van Trees, 1968)
0. 1 D F

0 0.1 0.2 0.3 O.U 0.5 0.6 0.7 0.8 0.9 1.0

PF

Figure F.2. ROC's from Histogram Model.
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P D, and and their Variances I_

AA

Threshold(W')P var (P) P' var.(P. P var"(PD)

2 1.000 3.120 E-04 .818 .330 E-02 1.000 .000 E-04

3 .419 1.910 .644 .329 .826 .110

4 .252 1.210 .560 .327 .743 .284

5 .176 .862 .507 .-06 .689 .457

6 .133 .656 .468 .324 .650 .624

7 .105 523 .438 .322 .620 .784

12 .489 .244 .348 .315 .530 1.510

20 .242 .121 .278 .305 .460 2.530

Table F. 2
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Appendix G

L. COMPUTER PROGRAMS

The computer programs used in obtaining the optimal array processor

performance reported in Chapter VIII are listed below. Four sections

compromise this appenidx

(1) Gaussian Signal of Uncertain Direction in Gaussian Noise (GUD)

(2) Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD)

(3) Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD).

The fourth section contains general programs which are shared by those in

the first three plus the program which calculates detection and false alarm

probabilities.

The Monte Carlo simulations were performed on a Digital Equipment

Corpor'ation PDP-9 compurcr. Each problem was broken into a sequence of two

steps as illustrated in Figure 7.1. In the first step, Gaussian random

numbers (mean zero, variance one) are read from a magnetic tape. For each

simulation run, the collection IG /Go,_I6 } is calculated and then written

on another magnetic tape. Each collection is read during the second step

and the remaining numerical integrations are performed. As they are cal-

culated, the likelihood ratios are written on a DECtape which is eventually

read by the program which calculates detection and false alarm probabilities.

Several important concepts in the calculation of performance for likelihood

ratio processors via computer simulation are discussed in Appendix F.
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Gaussian Signal of Uncertain Direction in Gaussian Noise (CUD)

(See SKE in HUD Section for "SUBROUTINE GAUSS1")
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r GA'TSqtA.J SIGNAL OF lJIJC6 RTALAJ I)!'Il-XT[0'J 1.-j (iA';SAN Not~j

D ART 1

C

G( t) A0 C 0), Am I( I o))
C04104E XIC?SO), XC2qr)

I I'C- I

CALL 0D~.(,'rg~

00~AL c2flC) I,,J Ii I'lI

r 011I r'JIAA 0I'J FO Jt olrITTIAL SLI.'JIIw srri ~ l.I

CAL

-j ~~0 1O,) 21,<

CaLL '5 7 .()L<)

A CALI. t:4C7.tCt),I*XX'()

0(Mi )=O.

00 130 Lm I,'(I.

tL=! .L
(CLR= rL" RI'cI)7~C..(L

1 0 C;Ltx CL! + 7M~UCL
ARP ( 4 4,L) ='CLR

130 AHI(i4,.L)2'CLZ
140 CO,4T t NU
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C, C044M.tJ SINGLE FREIMENCY CONJ3!TIO"JAL '0t0I.11IJTlOlJ

ISO UIO M+zA4

1JfFin ('1.-4. + I
49R(fO'r*0 A441(tiJ0F2) *A(.tL

170 413t(*40E)v) ArM1fINF)R() + t CI.

C i)IJTPIJ1
C

CALL 0'IT(GG. Pft~f* LVOC,()

.o1 40 tI) 41%

CALL OIIT(A4RIC.. I*'epY, Lf)C-<)
0)0 C4'LL JC VII(1,1?, L0O
r

C ENDP OFV OJP SLI1LArIO'4 411a

I F.1. ~(1./IOW 303GO( TO 200
I RITS(6p 145) -1-)

n0t) CO)4T tN'Ir.

CALL')'T(,0 IRLOC()

210 FO't4.T/>X,iH1 L',0C,, 13)
STOP
E.NO

itFI. ......I
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I ~ ~ C V1R1IJTIN' INPUJTS PARA1UTFRS FOI jAilS I

WRITEM(, IjI1 F0q'4A?(/9XN,16li3LOCCS (I'S{IP) TO 8Ki SAdPPEI) ON TAPE/)
REAf)C5*5) ISi{IP

t5 FOR4AT(ti)
1JRITF(6,7) 1(;-(1

7 F0RA.AT(/ ?Xp64I~r(1Px,1S)
14RITF.(6i 10)

10 FOqIAT(/2(<p42HNIMRER OF FREQUENCIES (di) ANDT ELESlENTS (K0)

302 FO rIlAT C 9 2)

6RT. 4,90) ,K

10 Foq'lr) "p)43P25*2K&2

40 FRA(P'AHfl3RO IN/
REM299 RNSo4RIA(9

60* FO-A('X __II= 15)
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GAIJSIAl"J IGNAL )F UNCERTAINJ DIRECTION IN GAUSSIAN NOJISE~

C PARTI IFC SA DTFI I ;S A OT F?2 OGA4C.L J0IINSI,0?,AR2iORESI,

C 'RESNI ;, GA'ISS la FGP2U

C I NI TIALI't ING
C

nIPENCI0N FI(50)., P1(200W, 4(20,20)

I C* At OAOp COiST, AOCCoI (A0c30, M.- iNI1JA

C

-r CALL PAq1PII( I ;( I P,1, K. I WJ5,qS.AN4,AOr 80)
IF(ISKIPNF.O) CALL SKI(P(2ISKIP)

C
C ORDER HANW)LER FOR INPUJTTINJG SU)FFICIENJT STATISTICS

( I -A;- I
CA!.L ORqD(R4,-(IND,NJ'4)

Calq/( ANJ4FLOAT(,C)*S)

tQlx(A'Es*(K- 1) )*(FLOAT(-( 'SAN)

n0 00Ijjmj,IqWp4S

C iNMuT SIIFCIr STATISTICS

CALL IN(GG,IX<()

CALL t'(ARR(1).tXX0
pto CALl,1JA3()I~

C
rC CALCULATE L

tF(AO.LE.O.) AtIOAO=I*
IF(A0.L7.#O.) GO TO 20
CALL R'VNI(AO,0#F!,-PI)
At nAOFI( 1)

AfOqI0aAOUSlN( 30)

Xq01ItI-a YOA I
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C

C OUITpiy L

I CA4L! OIIT( ALP IYYY, IBLOC'()

C END OF ONE '14ULATIOVJ RUIN
c

!F(.IN'~C4J/5)*O)GO TO ?00

195 FOR4AVC2<D 54RI1rES CO'IPLEFJD,15)

W~tT~(6,2 OILOC(

210 FORt1AT(/'.X, IflBO?= 3

STO

>1N
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c ';13OTN IN1'1~TS PARAM2ETERS FOR 3AIJS211

I FO~f4AT(/0*X,36ihfL0CtCS (ZSK1P) TO BE SKIfPPED ON~ TAPE/)
qEArX5D*S) ISKIP

WRtTFC6,p10)
JO ~ T(/<,4K~4i:4s~qOF FREQUENJCIES (M4) MD ELE1lE.-T5 (01)

20 FOR'4ATC>12)
V I T F~, C f, t, K

40 F 4 T(/ X, 144.411l8E: OF R'INS/)
REDC 5, SO) I RUN S

50 PORIAT(IS5

7.1 P0OAT(/,'(3-fP0WER OF SIG-4AL CS) ANDJ NOISE (N)/)

VRITs..c6,40) c, A#4
90 FRA(hF.,,,~~ 1 5 p

WRITF.(6# 100)
IM) F0RiAT C,3!";JCErINTYr PARAikETES AO ANDO 30/)

sAfl( So II G) P.O. 80
110 F091IAT&iF;92)

R.FTIJRV



1.C FIfJCTION~ CALLED BYGAUSS1 IN PqOGRA4 AUP

V C

SS'aO.
C
C

ARG= FtLOAT(INI)(I)-l) * WOTS

10 'S= SS + AF3R(I)4'COS(ARG) - AF3[(I)*SIN(ARG)ISCS O9*O(LA(-)WOS OB*I(LAMl*OS

G'=1 T*XP-S

RETUR

EN
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Signal Known Except for Direction in Noise with an Additive

Directional Noise Component of Known Direction (SKED in NKD) [I

11
U

(See GUD Section for "FUNCTION G1(WOTS)") LI

Li

ii

H

i ;

It

)I *I -
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C 'SI(0NAL <iJ0J' KCEC) FOR DIRECTION
C IN *'01'9 OF KN~OWNJ DIRCTL0,J
C PART I

C

C INITIAL17I.G
RFAL. tLRP ILI, NVOTN
njjsr~t1~cq~ 71 t)~ (10)p IeJD( 00), ARR 10, l). A;31 10,10),

I ARIIAARII(100))
rollNx(090), X5!(prio

C INPUT DAA4ETF.RS

CALL PARAII.( IS-{I P, 4.,( *tIRI14SP ESP A.Vo D)
IF(IS{(IP.NE.0) CALL 5S't(]CIIS<(IP)

C ORD)ER 4IANS)LER FOR 0(JTPlJTTING q;;FFICIENT ST'ATISTIGS

K( 1=1< I
CALL ORr)FqC.4, K I* IND., NrH)

If) FOR'IAT(/q'(, tti4R'i'JS COIPLF-TED/)

CC 00 q00 .1.J .01iRtiJsA Ei

C Ai 'JOLF FRF-1311JCY CSJrIGNI)AL S ASSI ON
C

C

ROR=SQRT(E/2.)

CALL INi(Y~qPIXX'()

'Y) 100 1-4,'(
AqG=FLOAT( I-I )*'1WOT4

C" CO(AR(,)
qJ IN(iVR6)

CALL IN(YVR*JRIXV)
R(I)= C4*Y'NR +CO*R*Cl + Y0I1S5J)

CALL tVJC?'JIXV,0((

10 41 ~ (1)a CN*YNI + C(fr)I*Cl - Yi)'l*SNJ)
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c qFFICIFNVS1TATISTICS I.ADEOENDENT OF TS

C x D / (V* (AN * FL')ATM*O0))
G6= -(CF'LOATU,)*CAN~ + FI.0A0(-I*U)) /(AtJ*CAJ4 +F1OAT()*1))))

I ('R0q*K9fl + 9102101)L
(;l= (2./A41' * (7.R(1)*ROR' + 1I)8

no Ito r=,.K
AROW FLUAT(I-I) * NJWOTN

Ito G3= G3 + 0:(D(*R0R * Z1C1)*SOI)*Cu5(ARlG) 4 (RCI)*HOI
1- 7I(IDtHiD*SlN(ARG)
G3x )..a(*G3
G- GI 4 Gq - G3

c qJFFICtENT STArtSrt1Cg DEPEVJ0ENT ON4 TS

no 130 L1.#

GLIin C1-/,V) ~'(/R(Ll) kRI - ?.I(41)* 1OR)

ARG= FLOATCI-Ll) xNI40T~l
41.-1 HLR + (7.9(I)*R0R + /.[(DwROD%~iCOS(ARG) , ~()r~)

9' L -(LI #, ('IACI)44Ol - /IDP0)10 AG
I -('M~).qf)R + IItO)5NAG
'-LO= Ca!LR

ICL'(-L

CtL= C *. FL0.VF(4L) c 010't';30't + RO10I~0I

4' ~Ixl CIL - SM1ARG)

ARC,L)= GLR - 4LR + It
130 ARt(lpf.)= -01.! + 41.1 - MlI

ANO'R3 IDv + I

170 A41IIAPJnX)2 A-311 I'0)-

c Olrrplrr

Cki
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*LCALL ()l~2pY~j;LC(

CALL OIIT( AR I (.1), IY*YY, I l()
190 CALL OIJT( A~3I (.J), IYY~f, 11LOCK()

C F>Jr) oF O.Iqc 'ltLAT!ON 1111-1
C

IF(..J.J~.''I0)4 O r TO 200

1179; FOR IA (P',I5)

qoO COJTINIP
CALL OIJT(O.,P5OPI3LOC')

l0 FOq'ATC/q,7Hp3LOCK,(1,3)
STO P

x iI
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*~ ;IqolllOINE EN0frrS PARj,"ErRS FOR SKCEWI[
c

~IRRC'fl1NE PARA43( I ;'I Oo,-(., I RJNS,9 P.S, Allo 0)
wqit *(6* I)

I FOR iAC(/PX& 649LOCLCS (ISKIP) TO B3E SK{IPPED ON TAPE/)
RC AOCS,5) IS;KIP i

IsFORI'ATC IS)

W91TFC6, 10) I
10 F1 In R(/l'X,141J1l;3R OF FREQJE'JCtES (1l) AND ELEIENTS (t(/)

FOR1NAT(q12)
VRITEC6p30) Is

30 FO R4AT (/,, I , 5X.- PHK=a 12)
Vq I T ,C 6* '10)

40 FO~R4TC/ !Xo 14411'44'*R OF RUNIS/)
REAO1SPS50 1RUNS

WRITP.C6, 60) IRUiN'
60* FOR4AT(/q*X, iHRIJAJ'c, 15)

VRITE(6, 70)
70 F0R1lAT(/:l,*41rPW)S OF SEGNAI. C1?S) AND VOI3SE (N AND W))

RPA0(5,9)) E, AN.# 1)

&400
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1. c '5TGVAL. KNiOWN FXCcPr FOR oWRCrzON
C IN N0199 OF 104 DlW' IRECTON
C PART I I
CI- C SA DTFI I/nllF~2 I
C ~090R1 CALL'; ';1J3ROIJT1N'.l; IN,. 01)'r, PARPA4 ORDER. SK{IP*
c RE'Nt3, RO4l, Fr(-2U
C
c

6~~ c
01MEM'SION F1(50)p Pr(20(0, AC20,2P0)
Ci040 'CI(q9O)p XP(25O)* I!0~(100), A8RC 100). ABIC 100),

I ,# Al OAO* GO'JSTP AOC90O, AOSF80, -1, NUcI
I X*(.2 p5 1
I YYfY' I
MROC (O

C
C INJPUT PARAI'FTRqS

CAL

IF(ISK(IO.NE*O.) CALL S,(IO(PPIS,(IP)
C
c O'V)ER HANDt.F rOR INPUITTt1IG SU;FFICIEN'T STATISTICS

CALL. ORD(4,l1,IND.vtIll)

C-2

S F0RMAr(//)(. 1,a4RfINSJ CO04PLI:,T1F/)
no 1100 JjmlIP!RIR4 cW AI ld

C 1-DI SUJFFICIEN4TSAITC

CALL INCAR:(1)I'V'()
10 CALL NAIIxX

cC UNET IDRgSTION

1 IF(40.LE.0.) AI0A0*I.
IFCAO,LF,#0.) GO TO 2,0

CsALL RII(02FI
Al OAO"FI(1)

90 CO1JTxFLOATe1I-I)/(2-.1,3.14159%AIOAO)
A,"C8R0xA0RcC0(P'))

'fRQ)lf23. !AS9/Fi.OATCM-l)
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ALm F<CP(G) A(o

C

CALL OtJT(0V.,I'!Y, lHLO0t(

WJRTp.(6j 9) 1'LCJ
105 FORM1AT (/ N1HP IS)Z

910 0Tt P

IRT (al O IJP

1)0 FRA(P,7tLC~~3

IiqT p
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SIRIICTP 1NJPIITq PARA4ETERS FOR S-4WRII

I FORl(TP(/,36LOC' (!541IP) TO RE SKIPPEDO 04J TAPE/)

C; FOqIA'r(15)

-i I7 F0R4'T(/P"6f1'{,10-, 15)
WRII (6, 10)

in F0R4AT(/5!,40sfNiyls3R OF FRE(N1FNCIES (1) AND) EL.~E4?S 4

P O FORIAT('q1q)

VRITEC 6, 40)
40 F(JAr(/?', I {NU4P4ER OF RUNiS/)

WRITE(6* 60) 1 R'U;J5
60 FOR 4AT( /9'<, 5'qRI1NS-, 15)

jR IIT

10 O A(/IrI.IN RTIT A:4TR OADR/
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C T4';' VI1 R90YINji FORI1S 'ME INTIEG9AL OF GICP) FROI X TO Y
C 'rE Atl1;Y, Iq q9EriiqjvIr) IN A(I.,1)
r PROGRAI NFFI)S FUN~CTION CGt(P)

9 00 3 I:*qN

C RF.C1191

S1112 0.

DO I Jmt*IK*2

C EXTRAI

c 1121- Iif nn I K-1.11

.1 CONJTINU(E

4 FO9*AT(//?Xp46HAqMjING INTEGRAL I REQIJIRIED 20 ITERATIONJS )
5 RETJ'4tN

END
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Signal Known Exactly in Noise with an Additive Directional

Noise Component of Uncertain Direction (SKE in NUD)

(See SKED in NKD Section for "SUBROUTINE PARAMV"; random numbers uniformly

distributed between zero and one are read from DECtape by "SUBROUTINE IN3")

bE

HF
1; Iv

IL
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C S10'JL '{JOJJ 'ArTl.* 1"j *'JiE)1I wJ!T A DI9F'CT1O~'JAL
r N\OISF CO40ONFVT OF 'l*'JCP.RTA1"J) O)[RSCT1ON

C PART I (S;TR1lCTlME-) FOR A G-(AAJ)

r %A O)TFI 3/UTF9 2/rQrFI 3
G PRO GRA 4 CALLS95 1 RIF.01T I NS: IN s OlJT I N3.,P'-A 5 *OR DER,, AN 5<) S(P

REAL .1J'JTS,0 NWOTN

I AqRO( 10a 10)p ARIO( 10, 10), Aqt1C 10, 30)p i ((IOP IMP,0)

pcXXx=25I

IXX325 I

I F( I e( 2 .) CL

C

IFALL .. '~0 CR-Ellp(A~lL .<IP(3,I{I

F()'41'r<5)p 1HRU CO.10LETFIV)

';AL OOOE)Rj.;=I,<3 RUNS:4

C, CliOOqs' A RAN001O' NOISE 0111ECT1')'

C

NVO4TS=1 *3 A 59/2.
qnqzqnRT( f S/9.)

Cfl='0)RTC AN/q.

Cq=D/C AM& (AN+4FLOAT(4)*0))

C 0II*'~3~

-t1 444L



- 185

C
P01111.1 COEFFCI IJ1; UDERI HO

~ CA~I. L r l(.C-Yp, '\,tJOPI1Tt'J, SITCNi C))

I C ! L2 .AfT1'3TCS lhI); -rKI)EtT OF TrJ

-:F.M-jN STATISTICS 01 PF>OEN'J' ONJ Tt

161 L.

CALL OuIr ruIlv.cG3, (iG, PiU"1, 1Y*,I 8LOCK)

V C N Or nll RIJNLV!Nfl

IF(JJ~E..JJ1O~t1O)GO TO 200

*JRITC6, 395).1

C A.

4W1'P(6pql0I) I3LOCF(

Pi1o F0RlAT(/qK 74IRL0C.(-3,15)

, Ij
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C yIJs~qOIjr!Nw, 1~INPI[T DA-;eTES FOR SQrGc1

c C,113R I IT I NF DAPA 15( 1(I P, 4,o <, tI I'N(; FS,p ANP 1), AO, 80)

I FOlAT(/!16-LOC-<S (1S{!<P) TO -3E~ SKJOPTL') 0-J TAPE/)
9;AlD(9#5) I'!

45 9 'RIAT(Vi)

7 F0R~lAT(/PX,6ilIS-CiP=.*15)

1 o F0'HAT(/I4iHJJ'IIR OF FREW'IENCLES (A) A.4) EL.EIENTS (,0/)

.0 FOR*4AT(PIP')
11r1TE(6A30) tl, K

10 FOR~iAT( /q~X, .4 12~5Xj, H{* 1)

1 ~JR1TFC6,/40)
40 F')R1AT(/2P(, I'P*JtIRER OF RIJ.'J5/)

RF*(r)( 5,C 0) 191JNS;

SO FORIA~T(15)
WR TF( 6, 60) 1IR'JNS

60 FORTC/P.'< INJSt--. I
1~T-i(is 70)

7" ro4re2X,ijV'0WERc OF 91IGJA. (FI;) AND) *NOSF (N AND 0)/)
RrA)(9p,30) 57Sp Alp I)

90 F lA ; .9

2] r,"))r;

VOR1AT/qX-34iI: ,<, : )p: )F
WR -ls10

to FCA#lT 1-X 3qlA FT lT PA-ASTIl A0C AN 130/)-
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G JJMOTIN'J CGHOOW; A 'lAN011 NOXqF. IIEGT!O

C Si1ROUTrrrE~ CA~LLS 'II;i'lOIITINE IrV3
r SA OTF3 3
c

REAL NVOJTN'

A( 1)*.0096

A(5)=,O0977

A()=. I 136

A( 1) 1416

A( 14)2 113 5')

AC 16) 34 007
A( 17). 310

AC %) 93 I

A(P I ) a - 5';M

A11)1 14 5

9(l) 0766
9(r5):. 1197
13(6) =. 170 3

P135

9(!l)s.3760

RC 15).41) 79
q16)s P

Mt I )54P
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TIC 19)~ .4350

1V..61.50 .~5

IF(.2.GT.-iO) (0T

IF(AO, PQ. 3.) NWOTi=A3Cj)IL i30 TO 10

WIN

------ -----
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C GENERAL INPUT '4ANDLEA
c '3FT IXXI-P9j TO !1'JITIALIXF

S A DTF3I ; READS FROrI DT3

'*. C ,(,&"E.2P5 ) (30 TO 10

XK3 I
YX3 ( XJIX3=XX+IEUR

HN
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I ARIN I Ov 10), AtH Of 1, 10()), AR IC IO 10) s0) ARI I C 10 10).p
C 2 Gt 10).- AIM3 C 0 0) P; ALHI4O100), A9R 1 (I100).p Ai3lIsl100)O

G GR7PRirp lPOIRIE COLIEFC,PEflS UNPDER no:1 CALL Itl(YD~,1XXX
CALL N'(Yolpixx~x) L
A9G=F1.OA'C I-I )*FLOAT(1I-1)*WOTN

~Ii CALL INCYNpIX'<X)
ZRCZ)=CN'*YN +. CD*I(yI~q*CS + yDI*Sr)j
IF(INI.P.0., ZR(I)=SQ?,%4R(D
CALL 1N(YNt,txx))

71(1)=C *YN Co*CYoI*Cq yn"#SN)
100 IFe1M*Efa.I) ~1IO

END)/
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SI R0IT N c;IIT-r. 191i.jw~ ,;io .- o .. (, i,;

RFAL N'JOTS
CO-1104 X0, 30) X~I(qO), 'X3(O, /R(0), 7I1( 101), II(,)I ARO(0 1 ) 0 A13 0 0, 1 WR Il (0) 10,4 10 , .1 I 1( 10)

rC IF1F1CIVN S TATIST1rc; (VFFFf,-' OF TN
r

G(4-4) 0.

6i') 0 4) =-t 'litG(.4 4) * / I 1 * t I

ARC,=FL0ATClr- I )rNt0TS
I0 Gl=GI + (79(Iecl90R + *.()d11 COS(ARG)

+ * 7.(I).,R0 - *.(~co~ SIJ(ARG)
G I= q.*(I*G I
GP= -FLnAT(~o CI*(1)O~ftROR + 9301*810)

RNTINff-

P.NO
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ROML NWOTq

IARiROC 3*0,t), A'310(10tpO,0), AI3RI( 10,30), ARR P 0,1),
rv(10),. Arl~lf(IO0), A9140(100),# A$3R.11lO).o A91"tt(IOO)

C;FICET .TTS C DEEDETONT

FLKzO.

r)O ~ ~ T 14170&P

140 CLlmCL1 + Z(Dq(1)w1OI 1(0*4RC)q) c'CAG

DL 1 0.1v3R ~S~(~3

F.13TC~LD)JI0
+. L ~ C)8~ x~()~"fI 0.O(AN

FLRFLC,'(q.

170 ~ G TO 170fl

4I4x -
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4~41, L) Gl.C CLAi

1O4~ )( 411,L)~ 2. GiClC. i

'I.

I



C04l1V'1 X1 C 25) ), , X3250) 3RC10) /I( (Iwo, lr~)( 1001),I ARROC I Oj O) P A91-0( 10) O) AR I( 10, 10),p As3l( I 1, 10),

c G( to), A;4010(). 10100), A W1 OCtO' I'11( 100), Aol IU 100j)

C0119ltJE SINGLE F9E()IIJNJY SOLJTIo.'S

hP ARR910( I)0.
19 ARI.IOCI)=0.

C
G3= 0.

noI 0.13 44-1#4l

no0g 11 i,'4
00 IR L I., K I

A99410( I PJ*); X)=RR40( +tJ!X A'3R0( i 1,L)
134 ARUIO 10(' -V)'Vl.40 I:OKIX) + ,AFlOC i-,L)

9FTIJRN~

:Ai



1,~5

43S'19ROIJTL4 OUT PUIT (23P G,~ ITYYy, I BLOCK)

IAR~fl( 3, ID), Aq31O(jt),jt0), At3Rj( I3, to), 41(0,))

PG(130), AF3'PIO(In"0, 'V3U40( ZOO), A-3'(1NM0), A4I:41I(100)

CALL OIJT(G3,*IfY'Y, I'31.OC-()
CALL O'1T(r3G, I'YfY, 'L0CIC)
00 190 1M11NIF1

CALL OrJT( A'R'1I C.J, 'oIY?Y, IqL0C'(,
CALL 0'JT(AF31I lC.D),PIYYfV, LOCr()
CALL oti (Af8R'1O(.I), IfYY I RL.OCK)

190 CALL OIIT(tAfql!41OU), 1th'r, X3LOCt()
c

RETUR
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r 'SIGNAL K(NOWNJ EXACTL 145 N~OISE WITHI A nrREcrio.%AL
P JOtqE C01O~IDONT OF UNCRTAIN DIRECTION

PART II

S A flTFt 1/fFI 2
C PROGRA'1 CALI.S SIJ3qO'ITl ')JI,: NOTPt41 (DE,3( ,i3SI,

AlC GAS;I., GA'1SS52,. GI.# GP

cc INITIAIING
C

rC0440N X1C290)# XP(P(29), IND(lOO0), A83RI0(Ilv 40100) *O)
I '43R1I( 100), A$3141I(100),# C* AIOAO, CONST, AOCt30j AOS80O, 14,N114

IFILOCK0
C
C INPfJT PAR'4'4ETERS

CALL~ .'>0 AL (, ~(~
C
C ORDER~ 4A*'J)LeR FOR I'4P'JTTI,4G SUJFFICIENT STATIS~TICS
C

CALL OrEQI NJJ1
C

IFCAO.Ll .0.) AIOAO21.
IF(AO.LE.'.-) GO TO q0
CALL 9E';IS(A0,PpF1,PI)
ATI AOm0FI C I)

'fOI~l I5/LA4 1

-& ~'C I)=(O4I
X (i) =YRO-1 1/2.

Y .12) =X(')

Y (4) =RO.N I
C

U'RI TEC6, 5)
5 FoR1'AT(/P'C, 1/441W11IS CO1Pl~iTEO/)

O0 P00 .J= 1, 1 'INS
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C IN0UT S'JFF!CI1NT STAT!STCS
C

CALL iNCG,Ixvx)

00 10 1=I,IJj
CALL [NCAR41C),IXX)
CALL UJAI4()I~
CALL 1 4CA9R4iO(1),1XXx)

10 CALL IN(A'3110C1),,jCX))
C
C CALCULATE L
C

ANIP4 0.
ADEV'4=0.

CALL G~SlXjp~)*&oR4
b15 ANU1!zAVII-11+ AREA

Do 17 1:a1, 4 AVIAE
17CALL G.VIfSS!2CX( I), ?CD, 6, ARA)
I? ADS140 AD9NO!4+ AREA

C

~) C 0~ITPfrr L

CALL OIJTCAL, 1yyf, IBLOC)

PENr) OF ONE SIM1ULArTION RIJN
C

IEC.JJ.J.C4.Jl/50)ic5O) G30 TO P.00
W91 T C 6, 19 5) .Jj

C195 FOR4fA(PX,!S)

lool CONJTINU;E

I ~ CALL O'J?(O..25IRLO( )
910 FOA4T/, 7HI PAOC,l 3 )

9T0 P
END
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CS119RO'ITINE GAIISS 1JSFS THE .1-001.4T GAIJSS-LEGENOqE QUJADRATURE
C FORVILA TO CO~i1PIJTE THE INTEGr7AL OF GI(X)iDC 9TWEEN
r INJTEGRATION" LIM1IT X AND Y. THE ROOTS UF SEVEN LEGEND
F. 4
c 0 0L?NOMIALS A-IT) TIE WEIG4HT FACTORS FOR THIE CORRSOi'DING
c 'IlAflRA'l'3:S APE STf)R5g I'll T4F Z ANi) '4E19HT ARRAYS
C RFCT I /FL Y. Mi 4AY AS SU1I V)ALUES V2, 3p ~5.p 6, 1 do ANO 15
r, OV4LY. THE APPROPRIATE VALIJES; FOR THE ef-PO[I'JT FOR41JLA ARE

C LOCATED IN FA.E'4EITS 7.(i{'?(I),...,Z<pC~) AND
C WEG{(<Y),..,WEIGHiT(FX(I-t1)-1 WHERE THE PROPER
r, VALUE OF I IS DETERIINE) BY FINDING THE SUBSCRIPT OF THE
C ELE'IENT OF THE ARRAV NPOINT WHICH HAS THE VALUE M. IF AN
C INVALID VALUE OF 41 IS USED* A TRUE ZERO IS RETURNED AS THE
C VAL11P OF GAUS.
CA DIM4ENSION NPOINT(7)p KEY(S) Z(24). WEIGIfT(24)

C PRuPSF' NPOINT, KIM, Z, ANJD.VEI(*T ARRAYS

DATA K(EYM )KEYC 9).oKEY( ,.E )KEY( 5), KEY(6), KEY( 7), -C(8)
1' / , :1, 4, 6, 9, 12, 17, 2-5 /

D)ATA Nr'OliNT( I),NPJOINT),NPOINTJ),P4P01NT(4),NPOINT(5)

I NV0 0INT(6)pNr4OINT(7)
p / 2, 31 41 5, 6, 10, 15/

C
DATA X.M 7), C2), Z(3), 7ZC4), ;'.(5)o 1.(6)p 7,(7)p ULc,, e~,'(t)

I 7C I)7 2,7C1)'(1)7. 5,(1)~ 17)*ZC 14),,,( 19), 7,(20)p

3 /0.577150, 0.0 ,O.7711597,v

4 0.139991, O.q61136, 0.v O.53tA469P
5 0.906140, 0.9313619, 0.F661209,p 0.932470,
6 0. 14997,, 0.433395, 0. 679,t 0. 0. s65063,o
7 n.973907., 0.0 0 0.201194, 0. 394151 p
13 nl. 97 0%)72, 0. -,44 113 0.?i4S3907p 0.937P73,
6 0*4~9793/

DATA WEIG1T(I), WEIG4T(P2), 'JEIG'{T3, W4EIG'IT(A), WEIGHi
M5) T

I E-IG'1TC5), WEIGHT(7), WEIGHTCB), WEIGHT(9),WEIGHT

2 4EIGHT( 1 ),WEI GHTC 12), WEI GHTC13), WEI GHi-c14).pWEIGH

3 WEI GHT( 16) WsEIG4T(17), W"71GiTcI19).p JI GHTC 19), WEIGH
Q,20), T

5 1.0 M4036989, 0.555556,
'16 0.65915.p 0.347q5, 0.56SM39, 0.47;3629,

7 0.2-369927, 0.467914, 0.360762, 0.171324,
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0.9955*/4, O.'q69967, 0.219036, 0. 1/49451P
9 0*066671, 0.90P574~, 0.198431, 0-196161.p
A 0*166P69* 0.1395?1, 0.107159,- 0.070366,
4 0.030753 I

c I1r ISRP FIRST Z AND WEIGHT VALUE

h C I-'JVALID ~4 USED

AREA-09
RETUJRN

c .SIT UPI INITIAL PARAM4ETERS

-IFIRT{ EYM.,
*JLAl;T2KEYCI~fl) I

IC ACC?~ILATIE THE S'J,4l 1 THE~ .1-P0INT PORIIILA

C
1; 1 M : 0.
DO 5 YJs,]Fl RST,JLAST
IF('.(.).EOo) rjsp'+'EHTJc1)
I F(7,(.).NE.0.) SlP'f~cIH4 WFLGHT(.])"(GIUC.J)*C D)

C
Cl lAKPE INJTFR'AL CORREC',!IN AND RETORN

AREA2CII Su1.M
RETURN
END
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FrfNT'J1'ON CALLED Wir GAUISSI (NIJIERATOR)

CO4 VOIV X 1(250) p XJ(P5) 1 IAN 100O), ARIO( 100), AHI40( 100),

I A~R1I( I 0),o A91.1 I( 100) * Cj At AO, COe(s'r, AO080, AO'so30 i, 4.o 4
C

ARG= FLOAT(IND(I)-I) *' 1401*9.
10 SS= q9 + ABRII(D)-C0S(AR() - AI3141(D)4clNl~ARG)

+5CS A0CI34cCS(FL0AT('- I)*W0Tc;) -At)SR04cSL-(FL.OATC,'-1IWOTS)

0 I=CON'9T1EXP('99)
RETUiRN~

.E N F
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(-. SUBlROIJTINE GASS2-()CYp'4, AREA)
C
c 9119ROtITII'J) G~fq~ IJ-,FS T-,F 4-P,)IT G3AISS-LEGEND'RE QIiADRATI]RE
r FORHI1ILA TO C04PIJTF T11P INTEGRAL OF t*;2(X)*DX 13ETWEEN

G INTEGRATION LI'4ITS X AND Y. 'rHE RUOTS OF Slt')EW LEFIEND
E
C POLYNOMIIALS AND THE '4EIG!{T FACTORS FOR TH1E COFPRESPONDI NG
C ()IIADRATIJ9ES ARE STORE!; IN THF, L AND WEIGHT ARRlAYS
C RESPECTIVELY- M MAY AS1;;ir4E VALUES 9,3.v4,5,v6, 30 AND 15
C ONLY*. T'IE APPROPRIATE VALU,(ES FOR THE '1-POINT FORA4ULA ARE
c LOCITED IN ELE.AENTS U(KEY(1)., ... oZ(KEY(I+1)-1) AND
C WEIGHTC(EYCI))p 9.o ,s T4EIc3TCH((+)-t) WHERE THE PROPER
C VIALUJE OF I S DETERMINED UrY VINDING rilE SUBSCRIPT OF THE
C ELE4ENT OF THE ARRAY iIPOINT 14HICH HAS THE VALUF Cie IF AN
C INVALID VALUE Oe' M IS VSED, A TRUE ZERO IS RETURNED AS THE
C VALUE OF GAUSS.

D14NS104J CPOII4T(7)* KE'f(8)p U(24). WEGHr(24)

C PRESET NPOINT* KEY* Z., AND 'lEIGH? ARR'AYfS
CI

/ 3 16A i4. 6, 9# 32,o 17,p 25/
C

DATA NPOlIN?( 2).NPOINTr(2),NPOBt JT(3),NPOuNT(4),NPOINrc5).
I NPOIC T(6)oNPOINTC7)
2 1/ 2p 3p 4p 5- 6.1 IOP 15/

DATA 7.CI)s VI()p 7(3),o 7.(A), 7.())p 7(6)p 4(7),o US)p 7.(9),.10),

3 /0.577350A 0.0 0.7745971
4 0.339981, O.,3611361 0.0 00.538469o
5 O.906 11%p 0.P38619,t 0.661P.09.40 O9324 7O0.
6 0*1449141 6,4s333,)5o 0. 679-'s 0* O. 865 06 3.
7 0.973907, n-fO j 0.201194, 093941511

9 0.5709, 0. 7-44 11, 0. 3 43;-'07, 0.937273,-
6 0.q37993/

- DATA WF.IG'{?(I)p S Q4~jT( P) WEIGHT(3),o 4EIGHT(A)p WEIGHI

I VEiG'1T(6), WEIGHTC7)., VEIGIT(4), WEIGfHT(9),*WEIGHT
10), 0

2 WEIGHT I I)*WEGHT( 2).vEIGHT( 13)WEI GHT( 14),oWEIGH

A3. WEIGHT(16),WEIGI4T(17),WEIiwHr(1f3),WEIOHT(19),*WEIGH

4 WEI GH(P I)*WEI GiT(22),, WEI GT(523),-WEI GHT(?4)
5 / 1.0 ,o 0ofs,8,369. 0.555556,o
6 0,6521115t 0#347655, O.568'339, 0.478629.,
7 0.23692?, O,46?7I4,v 0.36076a, 0-171394P

an1* , 4
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0-295524p O.P2~7.3, 0,2:19086, 0-149451,o
0-06671 0.0P59,O.1961131.v 0.186161.o

A 0.166269P 0-139571,o 0.107159, 0#070366.-
B 0.030753/

C FIN'D SIMSCRIPT OF FIRST Z AN~D WEIGr(T YALUE

00O I =1.-7s~ AMEPR
IFA64P0N~) 60 TO 2

c .)FVRST.)%MYUSED

DO SFTU JIITAL AA.TE

c
C , q= Y

C LS=~;Y1l2=Y')P

c ACUMILTE HF, um N Tit-.M-PONT O;I.4UL

1;U j0
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C FIlIJCTIO') CALLEDI RY GiVJSSP (IMN01NAT0'R)

I AM"I 14M0), A911 (1OO),p C., Al OAO* CONST, AtOCt3O. AOSF30, 4, .1411A1. C
1: s'q 0.

DO0 10 I1 1 N1

to S Sq +- A9RIO(I)cCOS(ARti) - A1314O(1)*SLN(A4G)
S52C*sS + AOG 40*COS (FOAT(-I1) 4c OTS) -AOSROOSNULFOAT( 4-1)g'WOTS)

G!=CO'JST*EXP( SS)
RPTIIRN'
END
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Supporting Programs

4I

V
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C GI NJFRAL INPUT HANJDLER

C SET EX'{'@251 TO INITIAIZE

2 c (;0O440M~ X(150)
C $A OTF2 2 ; READS FR;34 DT2

SIfS9IW~ITNE 1"3(YPIXXX)
COM.4 XC 250)
IF(IXX)(dI4;r251) GO TO 10

to Y=X(IXXX)
*X )C I IC
:1RETURN
*END
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GENRAL OUFTPUT HANDLE~R

G SET IYfY=l, I83LOCK= TO [NITI ALIZE
G COM04 X1C250), XC250)IC SA DTF1 I ; WRITES ON DTI

CC

XYY?=IVY?+' £
IF(IYYY*NE@.!FI) GO TO 10

10TE (I( 1,*Ju.250) 1
ENJD
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c ORDER H'V.JOLER

cWRITE~S IN INCRIEAq1NG ORDER THE LICN4I PRODUJCT VALUES

q:;JflRO1TIN ORDER(QIPKIPIN,NUM)

1. r)IME.JI,0N IN( 100)

DO 1O 1=1,300
10 114(1=0

DO 30 Al=IW4
I DO 90 Lxl,KI

20 IN(IND)=t
1 30 CONTINUJE

DO 40 1,100
IF(N(1.1J.1)GO TO 40

IN(N1?4):sl
40 CONTINUIE

wq1 TE( 5, 50)

150 FORI4AT //2X.3 -0Wi.*N4. PRODUCT VALUES/)

RETuRN

1E4
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C SBRI 1INEJ 'TO SKIP 1-5-11 f3LI0('{.- OF
c :I( '50NSRRS/MOLCK STORMI) ON UTI

c SA DTFI I
SlIRO1JTINE SKXP(I. ISKIP)

DIMENSION X(2-50)
00 10 K=IPISKIP

RFMIRN

EN



77 z- - .-

lit 209

THIS SIP390IrI.NJE CALILAMFS TVIE *4'))IFIE') '3EcqFL FUJNCTIONJ

c l'~m 3? C) E:RO' tF X=0.r OE NJOT ClinG.( FOR X LVLY T4ANJ 0.
r

I=X
*iIAXI'1 +

Pt (41JAXI 0.

DO0 1=1-,d4AX

1)~-f I{*T7iID (K0 +.PI 1)(. 1

no '! 1,IA

i-i R FTURJ
END
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C PROGRA4 CALCULATES PD) AND PF
V C

C, $4 DTF9.2
C PROGRA-1 CALLS S'JBI0JTINES POPF-l, IN# AID~ SK(IP

01OlLE PREGC!SION POPF I
RF.A1)C'S5) ISU(P

9 F034 AT(I13I ~9Pfl(5p 10) N4

R.SA(S 15) POO
19 FORIATCF7.6)

RP.AD)C5s,Q) THRIESH
IF1'(tCP*NE.0) CALL S?IP(2,I51(IP)
F0O~RIAT(F5.P)
CALL Ve0FVP1CTHRESH, 14, P0O, Pt), PF)

30 F0RiAT( l.C,3PF-zcD13.6.,5<(,3HPD.,DI3.6)
REWIND 2
GO TO I
STOP

FINDI
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10 SWmTNE CALCULATES PF All)~ PO

C FROA N VJALOES OF L IUNI)7.R HO

SFRRIII 'J ~Ppr4( THlE5;1, NP lOO, PDPPF
r Dt)'JILE PREFCISION~ PfD,PFjPROB
J PF=0.

pI~z POO(

PROFR 1 /FL.OAT(N)
DO10 £11,N

a CALL IN(YfIX)
IF(Y.L1T.14R';4) GO TG 10
PF= PF + PRO13

10t CONTI NUE
nPFTURC4
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